Suppr超能文献

离子液体中的介电弛豫:离子-离子和离子-偶极相互作用的作用,以及非均相性的影响。

Dielectric relaxation in ionic liquids: role of ion-ion and ion-dipole interactions, and effects of heterogeneity.

机构信息

Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India.

出版信息

J Chem Phys. 2014 Jan 7;140(1):014504. doi: 10.1063/1.4860516.

Abstract

A semi-molecular theory for studying the dielectric relaxation (DR) dynamics in ionic liquids (ILs) has been developed here. The theory predicts triphasic relaxation of the generalized orientational correlation function in the collective limit. Relaxation process involves contributions from dipole-dipole, ion-dipole, and ion-ion interactions. While the dipole-dipole and ion-ion interactions dictate the predicted three relaxation time constants, the relaxation amplitudes are determined by dipole-dipole, ion-dipole, and ion-ion interactions. The ion-ion interaction produces a time constant in the range of 5-1000μs which parallels with the conductivity dominated dielectric loss peak observed in broadband dielectric measurements of ILs. Analytical expressions for two time constants originating from dipolar interactions in ILs match exactly with those derived earlier for dipolar solvents. The theory explores relations among single particle rotational time, collective rotational time, and DR time for ILs. Use of molecular volume for the rotating dipolar ion of a given IL leads to a predicted DR time constant much larger than the slowest DR time constant measured in experiments. In contrast, similar consideration for dipolar liquids produces semi-quantitative agreement between theory and experiments. This difference between ILs and common dipolar solvents has been understood in terms of extremely low effective rotational volume of dipolar ion, argued to arise from medium heterogeneity. Effective rotational volumes predicted by the present theory for ILs are in general agreement with estimates from experimental DR data and simulation results. Calculations at higher temperatures predict faster relaxation time constants reducing the difference between theory and experiments.

摘要

本文提出了一种研究离子液体(ILs)介电弛豫(DR)动力学的半分子理论。该理论预测了广义取向相关函数在集体极限下的三相弛豫。弛豫过程涉及偶极-偶极、离子-偶极和离子-离子相互作用的贡献。虽然偶极-偶极和离子-离子相互作用决定了预测的三个弛豫时间常数,但弛豫幅度由偶极-偶极、离子-偶极和离子-离子相互作用决定。离子-离子相互作用产生的时间常数在 5-1000μs 范围内,与在 ILs 的宽带介电测量中观察到的电导主导介电损耗峰相吻合。ILs 中源于偶极相互作用的两个时间常数的解析表达式与之前为偶极溶剂推导的表达式完全吻合。该理论探讨了 ILs 中单个粒子旋转时间、集体旋转时间和 DR 时间之间的关系。对于给定的 IL,使用旋转偶极离子的分子体积会导致预测的 DR 时间常数远大于实验中测量到的最慢 DR 时间常数。相比之下,对于偶极液体的类似考虑则在理论和实验之间产生了半定量的一致性。ILs 和常见偶极溶剂之间的这种差异可以根据偶极离子的极低有效旋转体积来理解,这被认为是由介质异质性引起的。本理论预测的 ILs 的有效旋转体积通常与实验 DR 数据和模拟结果的估计值一致。在较高温度下的计算预测了更快的弛豫时间常数,从而减少了理论与实验之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验