Suppr超能文献

钙释放通道对海马突触可塑性和空间记忆的贡献:潜在的氧化还原调节。

Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation.

机构信息

1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile.

出版信息

Antioxid Redox Signal. 2014 Aug 20;21(6):892-914. doi: 10.1089/ars.2013.5796. Epub 2014 Mar 11.

Abstract

SIGNIFICANCE

Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience.

RECENT ADVANCES

This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus.

CRITICAL ISSUES

Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD).

FUTURE DIRECTIONS

Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.

摘要

意义

记忆是人类认知功能的重要组成部分。因此,揭示负责记忆形成、存储和丧失的突触可塑性事件的细胞和分子机制是当今神经科学的主要挑战。

最新进展

本文首先描述了细胞内 Ca2+信号在海马体空间记忆形成的活性依赖性突触可塑性过程中所起的广泛作用,然后重点介绍内质网 Ca2+释放通道、ryanodine 受体和肌醇 1,4,5-三磷酸受体如何促进这些过程。我们详细检查了支持 Ca2+释放通道在突触可塑性中的关键作用的最新证据,包括结构可塑性和海马体空间记忆的形成/巩固。

关键问题

细胞氧化状态的变化特别影响 Ca2+释放通道的功能,并改变海马体的突触可塑性和相关的记忆过程。本文强调了由于活性氧水平升高导致 Ca2+释放功能缺陷如何导致与衰老和阿尔茨海默病(AD)相关的海马体功能缺陷。

未来方向

应进一步研究 Ca2+释放通道促进海马体突触可塑性和空间记忆形成/巩固的确切分子机制。未来的研究应测试氧化还原修饰的 Ca2+释放通道是否有助于产生持续的突触可塑性和海马体空间记忆所需的细胞内 Ca2+信号,以及氧化还原平衡和氧化应激的丧失是否通过改变 Ca2+释放通道的功能,导致衰老和 AD 期间发生异常的记忆过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验