James S Jill
Arkansas Children's Hospital Research Institute, Little Rock, United States.
Glob Adv Health Med. 2013 Nov;2(6):48-51. doi: 10.7453/gahmj.2013.088.
Folate-dependent one-carbon metabolism is present in every cell of the body. It represents a central systems biology hub that reverberates into countless other pathways with more specialized roles in specialized cell types throughout the body. I have spent 25 years of research on this core biochemical pathway with several unanticipated iterations that led me from Down syndrome to congenital heart defects to leukemia and finally to autism about 12 years ago. Figure 1 provides an overview of the three interdependent pathways involved in folate-dependent methionine "transmethylation" and "transsulfuration." Methionine is necessary for the synthesis of S-adenosylmethionine (SAM), the major methyl donor for all cellular methylation reactions. It is also the major precursor for cysteine, the rate-limiting amino acid for glutathione synthesis linking transmethylation and transsulfuration pathways. Methionine levels can be negatively affected by genetic and environmental factors that reduce folate availability and/or oxidative inhibition of the methionine synthase enzyme. Because these three metabolic pathways are mutually interdependent, genetic or environmental perturbation of folate or methionine metabolism will indirectly impact glutathione synthesis, and conversely, alterations in glutathione synthesis will alter flux through pathways of folate and methionine metabolism. This interdependency translates into broader impact on essential cellular functions.
叶酸依赖性一碳代谢存在于人体的每个细胞中。它代表了一个核心的系统生物学枢纽,与无数其他途径相互关联,这些途径在全身的特殊细胞类型中发挥着更特殊的作用。我花了25年时间研究这条核心生化途径,经历了几次意想不到的迭代,这使我从唐氏综合征研究到先天性心脏缺陷,再到白血病,最终在大约12年前转向了自闭症研究。图1概述了参与叶酸依赖性甲硫氨酸“转甲基化”和“转硫作用”的三条相互依赖的途径。甲硫氨酸是合成S-腺苷甲硫氨酸(SAM)所必需的,SAM是所有细胞甲基化反应的主要甲基供体。它也是半胱氨酸的主要前体,半胱氨酸是连接转甲基化和转硫途径的谷胱甘肽合成的限速氨基酸。甲硫氨酸水平可能受到遗传和环境因素的负面影响,这些因素会降低叶酸的可用性和/或对甲硫氨酸合酶的氧化抑制。由于这三条代谢途径相互依赖,叶酸或甲硫氨酸代谢的遗传或环境干扰将间接影响谷胱甘肽的合成,反之,谷胱甘肽合成的改变将改变叶酸和甲硫氨酸代谢途径的通量。这种相互依赖性对基本细胞功能产生更广泛的影响。