Suppr超能文献

绿色光合细菌的完整细胞和分离的叶绿素体中的能量转移动力学。

Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria.

机构信息

Department of Chemistry, Arizona State University, 85287-1604, Tempe, AZ, USA.

出版信息

Photosynth Res. 1990 Oct;26(1):39-48. doi: 10.1007/BF00048975.

Abstract

Time-resolved fluorescence spectroscopy and global data analysis techniques have been used to study the flow of excitations in antennae of the green photosynthetic bacteria Chloroflexus aurantiacus and Chlorobium vibrioforme f. thiosulfatophilum. The transfer of energy from bacteriochlorophyll (BChl) c in Chloroflexus or BChl d in Chlorobium to BChl a 795 was resolved in both whole cells and isolated chlorosomes. In Chloroflexus, the decay of excitations in BChl c occurs in ∼16 ps and a corresponding rise in BChl a emission at 805 nm is detected in global analyses. This band then decays in 46 ps in whole cells due to energy transfer into the membrane. The 805 nm fluorescence in isolated chlorosomes shows a fast decay component similar to that of whole cells, which is consistent with trapping by residual membrane antenna complexes. In Chlorobium, the kinetics are sensitive to the presence of oxygen. Under anaerobic conditions, BChl d decays in 66 ps while the lifetime shortens to 11 ps in aerobic samples. The effect is reversible and occurs in both whole cells and isolated chlorosomes. Emission from BChl a is similarly affected by oxygen, indicating that oxidant-induced quenching can occur from all chlorosome pigments.

摘要

已使用时间分辨荧光光谱和全局数据分析技术来研究绿光合细菌(Chloroflexus aurantiacus 和 Chlorobium vibrioforme f. thiosulfatophilum)天线中激发态的流动。在完整细胞和分离的类囊体中,均解析了从 Chloroflexus 中的菌叶绿素(BChl)c 或 Chlorobium 中的 BChl d 到 BChl a795 的能量转移。在 Chloroflexus 中,BChl c 激发的衰减发生在 ∼16 ps 内,并且在全局分析中检测到 805nm 处 BChl a 发射的相应上升。由于能量转移到膜中,该带在整个细胞中以 46 ps 的速度衰减。分离的类囊体中的 805nm 荧光显示出与完整细胞相似的快速衰减分量,这与残留的膜天线复合物的捕获一致。在 Chlorobium 中,动力学对氧气的存在敏感。在厌氧条件下,BChl d 在 66 ps 内衰减,而在有氧样品中寿命缩短至 11 ps。该效应是可逆的,并且发生在完整细胞和分离的类囊体中。BChl a 的发射也受到氧气的影响,表明氧化剂诱导的猝灭可以来自所有类囊体色素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验