Department of Bioengineering, Imperial College London, U.K.
Materials Sciences Division, Lawrence Berkeley National Laboratory, U.S.A.
J Bone Miner Res. 2014 Jun;29(6):1392-1401. doi: 10.1002/jbmr.2172.
The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level, we attribute the loss in toughness to a decrease in the stabilizing enzymatic cross-links and an increase in nonenzymatic cross-links, which may break prematurely, inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales.
骨骼的多尺度层次结构是天然优化的,可以抵抗骨折。在成骨不全症(OI)或脆骨病中,基因突变会影响胶原蛋白的质量和/或数量,从而大大增加骨折风险。在这里,我们揭示了在具有三聚体 α1(I)胶原蛋白的成骨不全症(oim)小鼠模型中,胶原蛋白缺陷如何导致骨骼脆弱。在分子水平上,我们将韧性的丧失归因于稳定的酶交联减少和非酶交联增加,这些交联可能会过早断裂,从而抑制了塑性。在组织水平上,高血管管密度降低了稳定的裂纹扩展,广泛的编织骨限制了裂纹扩展过程中的裂纹偏转增韧。这表明了在骨骼分子水平上的修饰如何在更大的长度尺度上产生影响,从而影响骨骼的整体机械完整性;因此,治疗策略必须针对多尺度特性,以恢复骨骼的韧性。在这方面,杂合子 oim 骨骼中的发现,其中存在缺陷和正常的胶原蛋白,表明增加这些骨骼中健康胶原蛋白的数量有助于在多个长度尺度上恢复韧性。