Suppr超能文献

自动跟踪软件在水下运动分析中的有效性。

Effectiveness of an automatic tracking software in underwater motion analysis.

机构信息

Department of Electrical, Electronic and Information Engineering, University of Bologna , Bologna, Italy.

Department of Information Engineering,University of Padua , Padua, Italy.

出版信息

J Sports Sci Med. 2013 Dec 1;12(4):660-7. eCollection 2013.

Abstract

Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software.

摘要

标记放置在解剖学标志上的跟踪是运动科学中常见的做法,用于进行运动员和教练都感兴趣的运动学分析。尽管已经开发出不同的软件程序来自动跟踪标记和/或特征,但没有一个专门用于分析水下运动。因此,本研究旨在评估一种基于 Kanade-Lucas-Tomasi 特征跟踪器的自动水下运动跟踪软件 (DVP) 的有效性。手动跟踪了 21 个不同的水上运动视频记录(n = 2940 个标记位置),以确定标记的中心坐标。然后,使用 DVP 和商用软件 (COM) 自动跟踪视频。由于跟踪技术可能会产生虚假目标,因此当计算出的标记坐标与参考坐标之间的距离大于 4 像素时,指示操作员停止自动程序并纠正光标位置。软件所需的手动干预比例用作自动化程度的度量。总体而言,DVP(7.4%)的手动干预比 COM(17.8%)低 10.4%。此外,当分别检查不同的运动模式时,DVP 的手动干预百分比比 COM 低 5.6%至 29.3%。当分析标记类型而不是运动类型时,也观察到类似的结果,DVP 的手动干预比 COM 少 9.9%。总之,基于这些结果,可以将开发的自动跟踪软件用作水下运动分析的有效且有用的工具。关键点自动跟踪软件的有效性对于运动学分析在游泳和其他水上运动中的实际应用将是一个重大进展。自动跟踪软件的一个重要特征是需要有限的人工干预和监督,从而允许短处理时间。在跟踪水下运动时,跟踪程序的自动化程度受到算法克服与小目标尺寸、低图像质量和背景杂波相关的困难的能力的影响。与商用软件相比,新开发的特征跟踪算法在水下运动分析中表现出良好的自动跟踪效果,所需的手动干预百分比明显较小。

相似文献

1
Effectiveness of an automatic tracking software in underwater motion analysis.
J Sports Sci Med. 2013 Dec 1;12(4):660-7. eCollection 2013.
2
A review of vision-based motion analysis in sport.
Sports Med. 2008;38(12):1025-43. doi: 10.2165/00007256-200838120-00006.
3
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
PLoS One. 2016 Aug 11;11(8):e0160490. doi: 10.1371/journal.pone.0160490. eCollection 2016.
4
Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study.
PLoS One. 2017 Nov 28;12(11):e0188684. doi: 10.1371/journal.pone.0188684. eCollection 2017.
5
A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).
Int J Oral Maxillofac Surg. 2013 Jan;42(1):9-18. doi: 10.1016/j.ijom.2012.10.035. Epub 2012 Dec 4.
6
Real-time automatic fiducial marker tracking in low contrast cine-MV images.
Med Phys. 2013 Jan;40(1):011715. doi: 10.1118/1.4771931.
7
Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking.
J Sports Sci. 2013;31(3):276-87. doi: 10.1080/02640414.2012.729134. Epub 2012 Oct 11.
8
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
J Neurosci Methods. 2009 Aug 30;182(1):97-109. doi: 10.1016/j.jneumeth.2009.05.022. Epub 2009 Jun 6.

引用本文的文献

2
Reliability of Measuring Leg Segments and Joint Angles Using Smartphones during Aquatic Exercise.
Healthc Inform Res. 2022 Jan;28(1):95-101. doi: 10.4258/hir.2022.28.1.95. Epub 2022 Jan 31.
4
Improved Diver Communication System by Combining Optical and Electromagnetic Trackers.
Sensors (Basel). 2020 Sep 7;20(18):5084. doi: 10.3390/s20185084.
5
3D reconstruction of human movement in a single projection by dynamic marker scaling.
PLoS One. 2017 Oct 18;12(10):e0186443. doi: 10.1371/journal.pone.0186443. eCollection 2017.
7
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
PLoS One. 2016 Aug 11;11(8):e0160490. doi: 10.1371/journal.pone.0160490. eCollection 2016.
8
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
PLoS One. 2015 Sep 14;10(9):e0138105. doi: 10.1371/journal.pone.0138105. eCollection 2015.

本文引用的文献

1
Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking.
J Sports Sci. 2013;31(3):276-87. doi: 10.1080/02640414.2012.729134. Epub 2012 Oct 11.
2
Kinematic differences between front crawl sprint and distance swimmers at a distance pace.
J Sports Sci. 2012;30(6):601-8. doi: 10.1080/02640414.2012.660186. Epub 2012 Feb 9.
3
Markerless analysis of front crawl swimming.
J Biomech. 2011 Aug 11;44(12):2236-42. doi: 10.1016/j.jbiomech.2011.06.003. Epub 2011 Jun 29.
4
Design and validation of surface-marker clusters for the quantification of joint rotations in general movements in early infancy.
J Biomech. 2011 Apr 7;44(6):1212-5. doi: 10.1016/j.jbiomech.2011.01.016. Epub 2011 Feb 2.
5
Kinematic differences between front crawl sprint and distance swimmers at sprint pace.
J Sports Sci. 2011 Jan;29(2):115-23. doi: 10.1080/02640414.2010.523090.
6
A review of vision-based motion analysis in sport.
Sports Med. 2008;38(12):1025-43. doi: 10.2165/00007256-200838120-00006.
7
Shoulder and hip roll changes during 200-m front crawl swimming.
Med Sci Sports Exerc. 2008 Dec;40(12):2129-36. doi: 10.1249/MSS.0b013e31818160bc.
8
Influence of swing leg movement on running stability.
Hum Mov Sci. 2005 Aug;24(4):532-43. doi: 10.1016/j.humov.2005.08.002. Epub 2005 Oct 5.
9
Human movement analysis using stereophotogrammetry. Part 2: instrumental errors.
Gait Posture. 2005 Feb;21(2):197-211. doi: 10.1016/j.gaitpost.2004.04.004.
10
A flexible software for tracking of markers used in human motion analysis.
Comput Methods Programs Biomed. 2003 Oct;72(2):155-65. doi: 10.1016/s0169-2607(02)00122-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验