Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.
J Am Chem Soc. 2014 Feb 5;136(5):2017-25. doi: 10.1021/ja4118413. Epub 2014 Jan 23.
Many experiments have shown that nickel with monodentate phosphine ligands favors the C(aryl)-O activation over the C(acyl)-O activation for aryl esters. However, Itami and co-workers recently discovered that nickel with bidentate phosphine ligands can selectively activate the C(acyl)-O bond of aryl esters of aromatic carboxylic acids. The chemoselectivity with bidentate phosphine ligands can be switched back to C(aryl)-O activation when aryl pivalates are employed. To understand the mechanisms and origins of this switchable chemoselectivity, density functional theory (DFT) calculations have been conducted. For aryl esters, nickel with bidentate phosphine ligands cleaves C(acyl)-O and C(aryl)-O bonds via three-centered transition states. The C(acyl)-O activation is more favorable due to the lower bond dissociation energy (BDE) of C(acyl)-O bond, which translates into a lower transition-state distortion energy. However, when monodentate phosphine ligands are used, a vacant coordination site on nickel creates an extra Ni-O bond in the five-centered C(aryl)-O cleavage transition state. The additional interaction energy between the catalyst and substrate makes C(aryl)-O activation favorable. In the case of aryl pivalates, nickel with bidentate phosphine ligands still favors the C(acyl)-O activation over the C(aryl)-O activation at the cleavage step. However, the subsequent decarbonylation generates a very unstable tBu-Ni(II) intermediate, and this unfavorable step greatly increases the overall barrier for generating the C(acyl)-O activation products. Instead, the subsequent C-H activation of azoles and C-C coupling in the C(aryl)-O activation pathway are much easier, leading to the observed C(aryl)-O activation products.
许多实验表明,单核膦配体镍有利于芳基酯的 C(aryl)-O 活化而不是 C(acyl)-O 活化。然而,Itami 及其同事最近发现,双齿膦配体镍可以选择性地活化芳基羧酸的芳基酯的 C(acyl)-O 键。当使用芳基特戊酸盐时,双齿膦配体的化学选择性可以切换回 C(aryl)-O 活化。为了理解这种可切换化学选择性的机制和起源,进行了密度泛函理论(DFT)计算。对于芳基酯,双齿膦配体镍通过三中心过渡态裂解 C(acyl)-O 和 C(aryl)-O 键。由于 C(acyl)-O 键的键离解能(BDE)较低,C(acyl)-O 活化更为有利,这转化为较低的过渡态扭曲能。然而,当使用单核膦配体时,镍上的空配位位点在五中心 C(aryl)-O 裂解过渡态中产生额外的 Ni-O 键。催化剂和底物之间的附加相互作用能使 C(aryl)-O 活化有利。在芳基特戊酸盐的情况下,双齿膦配体镍在裂解步骤中仍然有利于 C(acyl)-O 活化而不是 C(aryl)-O 活化。然而,随后的脱羰基化生成非常不稳定的 tBu-Ni(II)中间体,这不利步骤大大增加了生成 C(acyl)-O 活化产物的总势垒。相反,随后唑和 C(aryl)-O 活化途径中的 C-C 偶联的 C-H 活化更容易,导致观察到的 C(aryl)-O 活化产物。