Aatsinki Sanna-Mari, Buler Marcin, Salomäki Henriikka, Koulu Markku, Pavek Petr, Hakkola Jukka
Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
Br J Pharmacol. 2014 May;171(9):2351-63. doi: 10.1111/bph.12585.
The objective of this study was to determine how the AMPK activating antidiabetic drug metformin affects the major activator of hepatic gluconeogenesis, PPARγ coactivator 1α (PGC-1α) and liver functions regulated by PGC-1α.
Mouse and human primary hepatocytes and mice in vivo were treated with metformin. Adenoviral overexpression, siRNA and reporter gene constructs were used for mechanistic studies.
Metformin increased PGC-1α mRNA and protein expression in mouse primary hepatocytes. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (another AMPK activator) had the opposite effect. Metformin also increased PGC-1α in human primary hepatocytes; this effect of metformin was abolished by AMPK inhibitor compound C and sirtuin 1 siRNA. AMPK overexpression by AMPK-Ad also increased PGC-1α. Whereas metformin increased PGC-1α, it down-regulated gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Furthermore, metformin attenuated the increase in PEPCK and G6Pase mRNAs induced by PGC-1α overexpression, but did not affect PGC-1α-mediated induction of mitochondrial genes. Metformin down-regulated several key transcription factors that mediate the effect of PGC-1α on gluconeogenic genes including Krüppel-like factor 15, forkhead box protein O1 and hepatocyte NF 4α, whereas it increased nuclear respiratory factor 1, which is involved in PGC-1α-mediated regulation of mitochondrial proteins.
Down-regulation of PGC-1α is not necessary for suppression of gluconeogenic genes by metformin. Importantly, metformin selectively affects hepatic PGC-1α-mediated gene regulation and prevents activation of gluconeogenesis, but does not influence its regulation of mitochondrial genes. These results identify selective modulation of hepatic PGC-1α functions as a novel mechanism involved in the therapeutic action of metformin.
本研究的目的是确定AMPK激活型抗糖尿病药物二甲双胍如何影响肝糖异生的主要激活剂PPARγ共激活因子1α(PGC-1α)以及受PGC-1α调节的肝功能。
用二甲双胍处理小鼠和人原代肝细胞以及体内的小鼠。采用腺病毒过表达、小干扰RNA(siRNA)和报告基因构建体进行机制研究。
二甲双胍增加了小鼠原代肝细胞中PGC-1α的mRNA和蛋白表达。5-氨基咪唑-4-甲酰胺核苷酸(AICAR)(另一种AMPK激活剂)则有相反的作用。二甲双胍也增加了人原代肝细胞中的PGC-1α;二甲双胍的这种作用被AMPK抑制剂化合物C和沉默调节蛋白1的siRNA消除。通过AMPK腺病毒(AMPK-Ad)过表达AMPK也增加了PGC-1α。虽然二甲双胍增加了PGC-1α,但它下调了糖异生基因磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)。此外,二甲双胍减弱了PGC-1α过表达诱导的PEPCK和G6Pase mRNA的增加,但不影响PGC-1α介导的线粒体基因诱导。二甲双胍下调了几个介导PGC-1α对糖异生基因作用的关键转录因子,包括Krüppel样因子15、叉头框蛋白O1和肝细胞核因子4α,而它增加了参与PGC-1α介导的线粒体蛋白调节的核呼吸因子1。
二甲双胍抑制糖异生基因并不需要下调PGC-1α。重要的是,二甲双胍选择性地影响肝脏中PGC-1α介导的基因调节并阻止糖异生的激活,但不影响其对线粒体基因的调节。这些结果确定了肝脏PGC-1α功能的选择性调节是二甲双胍治疗作用所涉及的一种新机制。