Suppr超能文献

预测科罗拉多州圣路易斯谷地下水中的砷浓度:对个体层面终生暴露评估的影响。

Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

作者信息

James Katherine A, Meliker Jaymie R, Buttenfield Barbara E, Byers Tim, Zerbe Gary O, Hokanson John E, Marshall Julie A

机构信息

University of Colorado, Denver, Aurora, CO, 80045, USA,

出版信息

Environ Geochem Health. 2014 Aug;36(4):773-82. doi: 10.1007/s10653-014-9595-6. Epub 2014 Jan 16.

Abstract

Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

摘要

饮用水中高含量的无机砷摄入与慢性疾病有关。在较低砷含量水平下,风险尚不明确,部分原因是难以估计暴露情况。在此,我们描述了科罗拉多州圣路易斯谷砷浓度的时空变异性,并开发了预测含水层砷浓度的模型,该地区地下水中砷含量中度升高。本研究纳入了来自595个独特井位的历史水样,其总砷浓度各异。纵向分析确定了各井中砷含量的时间稳定性。从535口井的随机样本中得出的平均砷含量被纳入五个克里金模型,以预测任何时间点的地下水砷浓度。使用一个单独的验证数据集(n = 60口井)来确定预测能力最强的模型。研究结果表明,砷浓度在时间上是稳定的(r = 0.88;对于相隔15 - 25年从同一口井采集的样本,95%置信区间为0.83 - 0.92),并且使用普通克里金法创建的空间模型对砷浓度的预测效果最佳(预测值与验证数据的观测值之间的ρ = 0.72)。这些发现说明了砷的地质统计学建模的价值,并表明圣路易斯谷是开展地下水金属流行病学研究的良好区域,因为它有能力准确预测地下水砷浓度的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验