Suppr超能文献

如何最好地压碎蜗牛:牙齿形状对破碎载荷的影响。

How to best smash a snail: the effect of tooth shape on crushing load.

机构信息

Department of Biology, University of Washington, , Seattle, WA 98195-1800, USA.

出版信息

J R Soc Interface. 2014 Jan 15;11(92):20131053. doi: 10.1098/rsif.2013.1053. Print 2014 Mar 6.

Abstract

Organisms that are durophagous, hard prey consumers, have a diversity of tooth forms. To determine why we see this variation, we tested whether some tooth forms break shells better than others. We measured the force needed with three series of aluminium tooth models, which varied in concavity and the morphology of a stress concentrating cusp, to break a shell. We created functionally identical copies of two intertidal snail shells: the thicker shelled Nucella ostrina and the more ornamented Nucella lamellosa using a three-dimensional printer. In this way, we reduced variation in material properties between test shells, allowing us to test only the interaction of the experimental teeth with the two shell morphologies. We found that for all tooth shapes, thicker shells are harder to break than the thinner shells and that increased ornamentation has no discernible effect. Our results show that for both shell morphologies, domed and flat teeth break shells better than cupped teeth, and teeth with tall or skinny cusps break shells best. While our results indicate that there is an ideal tooth form for shell breaking, we do not see this shape in nature. This suggests a probable trade-off between tooth function and the structural integrity of the tooth.

摘要

以硬壳为食的生物具有多样化的牙齿形态。为了探究我们为什么会看到这种变化,我们测试了某些牙齿形态是否比其他牙齿形态更能有效地破壳。我们使用三种系列的铝制牙齿模型进行测试,这些模型在凹度和应力集中尖峰的形态上有所不同,以测量打破贝壳所需的力。我们使用三维打印机创建了两种潮间带蜗牛贝壳的功能相同的复制品:壳较厚的 Nucella ostrina 和装饰较多的 Nucella lamellosa。通过这种方式,我们减少了测试贝壳之间材料特性的差异,从而可以仅测试实验牙齿与两种贝壳形态的相互作用。我们发现,对于所有牙齿形状,较厚的贝壳比较薄的贝壳更难打破,而增加的装饰对破壳没有明显影响。我们的结果表明,对于两种贝壳形态,圆顶和平面牙齿比杯形牙齿更能有效地破壳,而高而细的尖峰牙齿则能最好地破壳。虽然我们的结果表明存在一种理想的破壳牙齿形态,但在自然界中并没有看到这种形态。这表明牙齿功能和牙齿结构完整性之间可能存在权衡。

相似文献

1
How to best smash a snail: the effect of tooth shape on crushing load.
J R Soc Interface. 2014 Jan 15;11(92):20131053. doi: 10.1098/rsif.2013.1053. Print 2014 Mar 6.
2
Finite element modeling of occlusal variation in durophagous tooth systems.
J Exp Biol. 2015 Sep;218(Pt 17):2705-11. doi: 10.1242/jeb.120097. Epub 2015 Jul 2.
3
Morphology does not predict performance: jaw curvature and prey crushing in durophagous stingrays.
J Exp Biol. 2015 Dec;218(Pt 24):3941-9. doi: 10.1242/jeb.127340. Epub 2015 Nov 13.
6
Smashing mantis shrimp strategically impact shells.
J Exp Biol. 2018 Jun 14;221(Pt 11):jeb176099. doi: 10.1242/jeb.176099.
7
8
Optimal designs of mollusk shells from bivalves to snails.
Sci Rep. 2017 Feb 10;7:42445. doi: 10.1038/srep42445.
9
Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.
Evolution. 2013 Feb;67(2):429-37. doi: 10.1111/j.1558-5646.2012.01772.x. Epub 2012 Sep 4.

引用本文的文献

1
Something to sink your teeth into: the mechanics of tooth indentation in frugivorous fishes.
J R Soc Interface. 2025 Apr;22(225):20240725. doi: 10.1098/rsif.2024.0725. Epub 2025 Apr 16.
2
: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer.
Integr Org Biol. 2024 May 10;6(1):obae015. doi: 10.1093/iob/obae015. eCollection 2024.
4
Bricks, trusses and superstructures: Strategies for skeletal reinforcement in batoid fishes (rays and skates).
Front Cell Dev Biol. 2022 Oct 12;10:932341. doi: 10.3389/fcell.2022.932341. eCollection 2022.
5
Taking a stab at modelling canine tooth biomechanics in mammalian carnivores with beam theory and finite-element analysis.
R Soc Open Sci. 2022 Oct 19;9(10):220701. doi: 10.1098/rsos.220701. eCollection 2022 Oct.
6
The rapid evolution of lungfish durophagy.
Nat Commun. 2022 May 2;13(1):2390. doi: 10.1038/s41467-022-30091-3.
8
The moment of tooth: rate, fate and pattern of Pacific lingcod dentition revealed by pulse-chase.
Proc Biol Sci. 2021 Oct 13;288(1960):20211436. doi: 10.1098/rspb.2021.1436.
9
The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):2058-2112. doi: 10.1111/brv.12743. Epub 2021 Jul 8.

本文引用的文献

1
Inferring biological evolution from fracture patterns in teeth.
J Theor Biol. 2013 Dec 7;338:59-65. doi: 10.1016/j.jtbi.2013.08.029. Epub 2013 Sep 3.
2
Fracture in teeth: a diagnostic for inferring bite force and tooth function.
Biol Rev Camb Philos Soc. 2011 Nov;86(4):959-74. doi: 10.1111/j.1469-185X.2011.00181.x. Epub 2011 Apr 20.
3
The effect of early hominin occlusal morphology on the fracturing of hard food items.
Anat Rec (Hoboken). 2010 Apr;293(4):594-606. doi: 10.1002/ar.21130.
4
Young's modulus and hardness of shark tooth biomaterials.
Arch Oral Biol. 2010 Mar;55(3):203-9. doi: 10.1016/j.archoralbio.2010.01.001. Epub 2010 Jan 25.
5
The effects of trapping and blade angle of notched dentitions on fracture of biological tissues.
J Exp Biol. 2009 Nov;212(Pt 22):3627-32. doi: 10.1242/jeb.033712.
6
Bite force and performance in the durophagous bonnethead shark, Sphyrna tiburo.
J Exp Zool A Ecol Genet Physiol. 2010 Feb 1;313(2):95-105. doi: 10.1002/jez.576.
7
Analysis of fracture and deformation modes in teeth subjected to occlusal loading.
Acta Biomater. 2009 Jul;5(6):2213-21. doi: 10.1016/j.actbio.2009.02.001. Epub 2009 Feb 10.
8
Ecomorphology of the moray bite: relationship between dietary extremes and morphological diversity.
Physiol Biochem Zool. 2009 Jan-Feb;82(1):90-103. doi: 10.1086/594381.
9
Functional consequences of tooth design: effects of blade shape on energetics of cutting.
J Exp Biol. 2008 Nov;211(Pt 22):3619-26. doi: 10.1242/jeb.020586.
10
Dental enamel as a dietary indicator in mammals.
Bioessays. 2008 Apr;30(4):374-85. doi: 10.1002/bies.20729.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验