Lam King-Yeung, Lou Yuan
Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 43210, USA,
Bull Math Biol. 2014 Feb;76(2):261-91. doi: 10.1007/s11538-013-9901-y. Epub 2014 Jan 16.
We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.
我们考虑一个关于两个竞争物种的数学模型,用于研究在空间变化但时间恒定的环境中条件扩散的演化。两个物种仅在其扩散策略上有所不同,扩散策略是随机扩散和沿资源梯度向上的偏向运动的组合。在没有偏向运动或平流的情况下,黑斯廷斯表明,当突变体稀少时,当且仅当其随机扩散率小于常驻物种时,它才能入侵。当存在少量偏向运动或平流时,我们表明存在一个正的随机扩散率,它既是局部进化稳定的,也是收敛稳定的。我们对该模型的分析表明,随机运动和偏向运动的平衡组合可能是种群更好的栖息地选择策略。