Suppr超能文献

用于条件扩散的反应扩散模型中的进化稳定和收敛稳定策略。

Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.

作者信息

Lam King-Yeung, Lou Yuan

机构信息

Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 43210, USA,

出版信息

Bull Math Biol. 2014 Feb;76(2):261-91. doi: 10.1007/s11538-013-9901-y. Epub 2014 Jan 16.

Abstract

We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.

摘要

我们考虑一个关于两个竞争物种的数学模型,用于研究在空间变化但时间恒定的环境中条件扩散的演化。两个物种仅在其扩散策略上有所不同,扩散策略是随机扩散和沿资源梯度向上的偏向运动的组合。在没有偏向运动或平流的情况下,黑斯廷斯表明,当突变体稀少时,当且仅当其随机扩散率小于常驻物种时,它才能入侵。当存在少量偏向运动或平流时,我们表明存在一个正的随机扩散率,它既是局部进化稳定的,也是收敛稳定的。我们对该模型的分析表明,随机运动和偏向运动的平衡组合可能是种群更好的栖息地选择策略。

相似文献

1
Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.
Bull Math Biol. 2014 Feb;76(2):261-91. doi: 10.1007/s11538-013-9901-y. Epub 2014 Jan 16.
2
The evolution of conditional dispersal strategies in spatially heterogeneous habitats.
Bull Math Biol. 2009 Nov;71(8):1793-817. doi: 10.1007/s11538-009-9425-7. Epub 2009 May 28.
3
Evolution of dispersal and the ideal free distribution.
Math Biosci Eng. 2010 Jan;7(1):17-36. doi: 10.3934/mbe.2010.7.17.
4
Evolutionary convergence to ideal free dispersal strategies and coexistence.
Bull Math Biol. 2012 Feb;74(2):257-99. doi: 10.1007/s11538-011-9662-4. Epub 2011 May 10.
5
Evolutionary stability of ideal free dispersal strategies in patchy environments.
J Math Biol. 2012 Nov;65(5):943-65. doi: 10.1007/s00285-011-0486-5. Epub 2011 Nov 3.
6
Evolution of conditional dispersal: evolutionarily stable strategies in spatial models.
J Math Biol. 2014 Mar;68(4):851-77. doi: 10.1007/s00285-013-0650-1. Epub 2013 Feb 15.
7
Evolution of dispersal toward fitness.
Bull Math Biol. 2013 Dec;75(12):2474-98. doi: 10.1007/s11538-013-9904-8. Epub 2013 Oct 3.
8
Evolution of conditional dispersal: a reaction-diffusion-advection model.
J Math Biol. 2008 Sep;57(3):361-86. doi: 10.1007/s00285-008-0166-2. Epub 2008 Mar 4.
9
On several conjectures from evolution of dispersal.
J Biol Dyn. 2012;6:117-30. doi: 10.1080/17513758.2010.529169. Epub 2011 Jun 24.
10
Evolution of dispersal in closed advective environments.
J Biol Dyn. 2015;9 Suppl 1:188-212. doi: 10.1080/17513758.2014.969336. Epub 2014 Oct 21.

引用本文的文献

1
Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment.
J Math Biol. 2019 Jun;78(7):2141-2169. doi: 10.1007/s00285-019-01336-5. Epub 2019 Feb 18.
2
Evolution of dispersal in spatial population models with multiple timescales.
J Math Biol. 2020 Jan;80(1-2):3-37. doi: 10.1007/s00285-018-1302-2. Epub 2018 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验