Suppr超能文献

模块化策略能否简化人类多方向运动的神经控制?

Can modular strategies simplify neural control of multidirectional human locomotion?

机构信息

Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy;

出版信息

J Neurophysiol. 2014 Apr;111(8):1686-702. doi: 10.1152/jn.00776.2013. Epub 2014 Jan 15.

Abstract

Each human lower limb contains over 50 muscles that are coordinated during locomotion. It has been hypothesized that the nervous system simplifies muscle control through modularity, using neural patterns to activate muscles in groups called synergies. Here we investigate how simple modular controllers based on invariant neural primitives (synergies or patterns) might generate muscle activity observed during multidirectional locomotion. We extracted neural primitives from unilateral electromyographic recordings of 25 lower limb muscles during five locomotor tasks: walking forward, backward, leftward and rightward, and stepping in place. A subset of subjects also performed five variations of forward (unidirectional) walking: self-selected cadence, fast cadence, slow cadence, tiptoe, and uphill (20% incline). We assessed the results in the context of dimensionality reduction, defined here as the number of neural signals needing to be controlled. For an individual task, we found that modular architectures could theoretically reduce dimensionality compared with independent muscle control, but we also found that modular strategies relying on neural primitives shared across different tasks were limited in their ability to account for muscle activations during multi- and unidirectional locomotion. The utility of shared primitives may thus depend on whether they can be adapted for specific task demands, for instance, by means of sensory feedback or by being embedded within a more complex sensorimotor controller. Our findings indicate the need for more sophisticated formulations of modular control or alternative motor control hypotheses in order to understand muscle coordination during locomotion.

摘要

人类每条下肢都包含 50 多块肌肉,这些肌肉在运动中协同工作。人们假设神经系统通过模块性来简化肌肉控制,使用神经模式来激活称为协同作用的肌肉群。在这里,我们研究了基于不变神经原语(协同作用或模式)的简单模块化控制器如何产生在多方向运动中观察到的肌肉活动。我们从 25 块下肢肌肉的单侧肌电图记录中提取了神经原语,这些记录是在 5 种运动任务中获得的:向前、向后、向左、向右和原地踏步。一部分受试者还进行了 5 种向前(单向)行走的变体:自选步频、快步频、慢步频、踮脚和上坡(20%坡度)。我们在降维的背景下评估了结果,这里定义的降维是指需要控制的神经信号数量。对于单个任务,我们发现模块化架构在理论上可以比独立肌肉控制降低维度,但我们也发现,依赖于不同任务中共享神经原语的模块化策略在解释多向和单向运动中的肌肉激活方面能力有限。共享原语的实用性可能取决于它们是否可以适应特定的任务需求,例如通过感觉反馈或嵌入更复杂的感觉运动控制器中。我们的研究结果表明,需要更复杂的模块化控制或替代运动控制假设来理解运动中的肌肉协调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验