Ihmsen Markus, Cornelis Jens, Solenthaler Barbara, Horvath Christopher, Teschner Matthias
University of Freiburg, Freiburg.
ETH Zürich, Zürich.
IEEE Trans Vis Comput Graph. 2014 Mar;20(3):426-35. doi: 10.1109/TVCG.2013.105.
We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.
我们提出了一种用于光滑粒子流体动力学(SPH)的投影方法的新公式。我们将对称的SPH压力力与连续性方程的SPH离散化相结合,以获得压力泊松方程(PPE)的离散形式。与先前的投影方案不同,我们的系统确实考虑了压力力的实际计算。这种纳入提高了求解器的收敛速度。此外,我们建议基于速度而不是位置来计算密度偏差,因为这种公式提高了时间积分方案的鲁棒性。我们表明,我们的新公式优于先前的投影方案和最先进的SPH方法。在典型情况下,可以处理大时间步长和低至0.01%的小密度偏差。通过具有多达4000万个SPH粒子的场景说明了该方法的实际相关性。