Suppr超能文献

使用可激活的传感器寡核苷酸检测完整细胞中的miRNA表达。

Detection of miRNA expression in intact cells using activatable sensor oligonucleotides.

作者信息

Yoo Byunghee, Kavishwar Amol, Ghosh Subrata K, Barteneva Natalie, Yigit Mehmet V, Moore Anna, Medarova Zdravka

机构信息

MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.

Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 200 Longwood Avenue, D-239, Boston, MA 02115, USA.

出版信息

Chem Biol. 2014 Feb 20;21(2):199-204. doi: 10.1016/j.chembiol.2013.12.007. Epub 2014 Jan 16.

Abstract

We describe a technology for the profiling of miRNA expression in intact cells. The technology is based on sensor oligonucleotides that are cleavable, completely complementary to a target miRNA, and dual-labeled with a fluorescent dye and a quencher. Upon entering the cell, the sensor oligonucleotide binds its specific miRNA target through complementary base-pairing. This triggers assembly of the endogenous RNA Induced Silencing Complex (RISC) around the miRNA-sensor duplex and cleavage of the sensor oligonucleotide, resulting in separation between the dye and quencher, and a fluorescence turn-on. In the presented feasibility studies, we focus on a specific miRNA (miR-10b) implicated in breast cancer metastasis. Using a human breast adenocarcinoma cell line, we illustrate the application of this technology for miRNA detection with nanomolar sensitivity in both a cell-free system and intact cells.

摘要

我们描述了一种用于完整细胞中微小RNA(miRNA)表达谱分析的技术。该技术基于可切割的传感器寡核苷酸,其与目标miRNA完全互补,并由荧光染料和淬灭剂进行双标记。进入细胞后,传感器寡核苷酸通过互补碱基配对与特定的miRNA靶标结合。这会触发内源性RNA诱导沉默复合体(RISC)围绕miRNA-传感器双链体组装,并导致传感器寡核苷酸的切割,从而使染料和淬灭剂分离,荧光开启。在本可行性研究中,我们聚焦于一种与乳腺癌转移相关的特定miRNA(miR-10b)。使用人乳腺腺癌细胞系,我们展示了该技术在无细胞系统和完整细胞中以纳摩尔灵敏度检测miRNA的应用。

相似文献

1
Detection of miRNA expression in intact cells using activatable sensor oligonucleotides.
Chem Biol. 2014 Feb 20;21(2):199-204. doi: 10.1016/j.chembiol.2013.12.007. Epub 2014 Jan 16.
2
Sensing miRNA: Signal Amplification by Cognate RISC for Intracellular Detection of miRNA in Live Cells.
Methods Mol Biol. 2016;1372:121-7. doi: 10.1007/978-1-4939-3148-4_10.
3
In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor.
Mol Imaging Biol. 2016 Feb;18(1):70-8. doi: 10.1007/s11307-015-0863-3.
10
Dual miRNases for Triple Incision of miRNA Target: Design Concept and Catalytic Performance.
Molecules. 2020 May 25;25(10):2459. doi: 10.3390/molecules25102459.

引用本文的文献

1
Candida albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth.
mBio. 2021 Feb 22;13(1):e0356321. doi: 10.1128/mbio.03563-21. Epub 2022 Feb 8.
3
MiRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer.
Sci Rep. 2021 Feb 2;11(1):2844. doi: 10.1038/s41598-021-82528-2.
4
Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.
Chem Soc Rev. 2017 May 22;46(10):2824-2843. doi: 10.1039/c6cs00675b.
5
A conformation-induced fluorescence method for microRNA detection.
Nucleic Acids Res. 2016 Jun 2;44(10):e92. doi: 10.1093/nar/gkw108. Epub 2016 Mar 6.
6
Tiny giants of gene regulation: experimental strategies for microRNA functional studies.
Wiley Interdiscip Rev Dev Biol. 2016 May-Jun;5(3):311-62. doi: 10.1002/wdev.223. Epub 2016 Mar 7.
7
Emerging Biosensing Approaches for microRNA Analysis.
Anal Chem. 2016 Jan 5;88(1):431-50. doi: 10.1021/acs.analchem.5b04679. Epub 2015 Dec 21.
8
In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor.
Mol Imaging Biol. 2016 Feb;18(1):70-8. doi: 10.1007/s11307-015-0863-3.

本文引用的文献

2
MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review.
EMBO Mol Med. 2012 Mar;4(3):143-59. doi: 10.1002/emmm.201100209. Epub 2012 Feb 20.
3
Human glioma growth is controlled by microRNA-10b.
Cancer Res. 2011 May 15;71(10):3563-72. doi: 10.1158/0008-5472.CAN-10-3568. Epub 2011 Apr 6.
4
Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage.
Nucleic Acids Res. 2011 Jul;39(13):5658-68. doi: 10.1093/nar/gkr110. Epub 2011 Mar 22.
5
Electrochemical detection of microRNAs via gap hybridization assay.
Anal Chem. 2010 Jun 1;82(11):4434-40. doi: 10.1021/ac100186p.
6
In situ hybridization detection of microRNAs.
Methods Mol Biol. 2010;629:287-94. doi: 10.1007/978-1-60761-657-3_18.
7
Development of a low-cost detection method for miRNA microarray.
Acta Biochim Biophys Sin (Shanghai). 2010 Apr;42(4):296-301. doi: 10.1093/abbs/gmq017.
8
Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model.
Nat Biotechnol. 2010 Apr;28(4):341-7. doi: 10.1038/nbt.1618. Epub 2010 Mar 28.
9
DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets.
Nature. 2009 Dec 24;462(7276):1075-8. doi: 10.1038/nature08626. Epub 2009 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验