Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
Mol Biol Evol. 2014 Apr;31(4):928-39. doi: 10.1093/molbev/msu045. Epub 2014 Jan 16.
The acquisition by parasites of the capacity to infect resistant host genotypes, that is, resistance-breaking, is predicted to be hindered by across-host fitness trade-offs. All analyses of costs of resistance-breaking in plant viruses have focused on within-host multiplication without considering other fitness components, which may limit understanding of virus evolution. We have reported that host range expansion of tobamoviruses on L-gene resistant pepper genotypes was associated with severe within-host multiplication penalties. Here, we analyze whether resistance-breaking costs might affect virus survival in the environment by comparing tobamovirus pathotypes differing in infectivity on L-gene resistance alleles. We predicted particle stability from structural models, analyzed particle stability in vitro, and quantified virus accumulation in different plant organs and virus survival in the soil. Survival in the soil differed among tobamovirus pathotypes and depended on differential stability of virus particles. Structure model analyses showed that amino acid changes in the virus coat protein (CP) responsible for resistance-breaking affected the strength of the axial interactions among CP subunits in the rod-shaped particle, thus determining its stability and survival. Pathotypes ranked differently for particle stability/survival and for within-host accumulation. Resistance-breaking costs in survival add to, or subtract from, costs in multiplication according to pathotype. Hence, differential pathotype survival should be considered along with differential multiplication to understand the evolution of the virus populations. Results also show that plant resistance, in addition to selecting for resistance-breaking and for decreased multiplication, also selects for changes in survival, a trait unrelated to the host-pathogen interaction that may condition host range expansion.
寄生虫获得感染抗性宿主基因型的能力,即抗性突破,预计会受到跨宿主适应度权衡的阻碍。对植物病毒抗性突破成本的所有分析都集中在宿主内繁殖上,而没有考虑其他适应度成分,这可能限制了对病毒进化的理解。我们已经报道过,在 L 基因抗性辣椒基因型上,烟草花叶病毒的宿主范围扩展与严重的宿主内繁殖惩罚有关。在这里,我们通过比较在 L 基因抗性等位基因上感染性不同的烟草花叶病毒株系,分析抗性突破成本是否会通过影响病毒在环境中的生存能力来影响病毒的生存能力。我们从结构模型预测了粒子稳定性,分析了体外粒子稳定性,并定量了不同植物器官中的病毒积累和病毒在土壤中的生存能力。不同烟草花叶病毒株系的生存能力不同,这取决于病毒粒子的稳定性差异。结构模型分析表明,导致抗性突破的病毒外壳蛋白 (CP)中的氨基酸变化影响了杆状粒子中 CP 亚基之间的轴向相互作用强度,从而决定了其稳定性和生存能力。株系在粒子稳定性/生存能力和宿主内积累方面的排名不同。根据株系的不同,生存中的抗性突破成本会增加或减少繁殖成本。因此,应该考虑不同株系的生存差异,以及不同的繁殖差异,以了解病毒种群的进化。结果还表明,植物抗性除了选择抗性突破和减少繁殖外,还选择了生存的变化,这是一个与宿主-病原体相互作用无关的特征,可能会影响宿主范围的扩展。