Suppr超能文献

分子拥挤物和共溶剂在生理离子条件下促进 RNA 的折叠协同性。

Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions.

出版信息

RNA. 2014 Mar;20(3):331-47. doi: 10.1261/rna.042747.113. Epub 2014 Jan 17.

Abstract

Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg(2+) ion concentrations are low, K(+) concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo-like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg(2+) (0.5-2 mM) and K(+) (140 mM) if the solution is supplemented with physiological amounts (∼ 20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.

摘要

在稀溶液和高离子强度的理想化体外条件下,功能性 RNA 的折叠机制已经得到了很好的研究。然而,在体内条件下,RNA 的折叠机制相对知之甚少,因为体内的 Mg(2+) 离子浓度低,K(+) 浓度适中,并且大分子拥挤剂和低分子量共溶剂的浓度也很高。在这里,我们应用生物物理和结构映射技术的组合来研究 tRNA,以阐明在类似于体内条件下控制 RNA 折叠的热力学和功能原理。我们通过热变性和 SHAPE 研究表明,如果在生理浓度(0.5-2 mM)的 Mg(2+) 和 K(+) 溶液中补充生理量(约 20%)的水溶性中性大分子拥挤剂(如 PEG 或葡聚糖),tRNA 的折叠协同性会增加。低分子量共溶剂对 tRNA 折叠协同性的影响各不相同,具体取决于共溶剂的种类,会增加或减少协同性。对于那些增加折叠协同性的添加剂,其增益表现为全长 tRNA 与其二级结构元件之间的二级结构转变更加明显。在拥挤剂和共溶剂存在或不存在的情况下进行的温度依赖性 SHAPE 实验,揭示了 tRNA 在核苷酸基础上的协同折叠程度,与熔融研究一致。从机制上讲,拥挤剂似乎通过稳定三级结构来促进协同性,而那些促进协同性的低分子量共溶剂则稳定三级结构和/或破坏二级结构。功能性 RNA 在类似于生理条件下的协同折叠与许多蛋白质的行为相似,这对细胞内 RNA 折叠动力学和进化具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a74b/3923128/19ec78c52ad5/331fig1.jpg

相似文献

1
Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions.
RNA. 2014 Mar;20(3):331-47. doi: 10.1261/rna.042747.113. Epub 2014 Jan 17.
2
Cooperative RNA Folding under Cellular Conditions Arises From Both Tertiary Structure Stabilization and Secondary Structure Destabilization.
Biochemistry. 2017 Jul 11;56(27):3422-3433. doi: 10.1021/acs.biochem.7b00325. Epub 2017 Jun 28.
3
Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes.
J Am Chem Soc. 2009 Nov 25;131(46):16881-8. doi: 10.1021/ja9066628.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.
Biochemistry. 2013 Nov 19;52(46):8187-97. doi: 10.1021/bi400816s. Epub 2013 Nov 4.
8
Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23075-23082. doi: 10.1073/pnas.1913418116. Epub 2019 Oct 30.
9
Molecular Mechanism for Folding Cooperativity of Functional RNAs in Living Organisms.
Biochemistry. 2018 May 22;57(20):2994-3002. doi: 10.1021/acs.biochem.8b00345. Epub 2018 May 7.
10
Confinement and Crowding Effects on Folding of a Multidomain Y-Family DNA Polymerase.
J Chem Theory Comput. 2020 Feb 11;16(2):1319-1332. doi: 10.1021/acs.jctc.9b01146. Epub 2020 Jan 30.

引用本文的文献

1
Fast peptide bond formation and release by the ribosomal large subunit.
J Biol Chem. 2025 Jul;301(7):110336. doi: 10.1016/j.jbc.2025.110336. Epub 2025 Jun 3.
2
Origin of ribonucleotide recognition motifs through ligand mimicry at early earth.
RNA Biol. 2024 Jan;21(1):107-121. doi: 10.1080/15476286.2024.2423149. Epub 2024 Nov 11.
3
Structural basis of MALAT1 RNA maturation and mascRNA biogenesis.
Nat Struct Mol Biol. 2024 Nov;31(11):1655-1668. doi: 10.1038/s41594-024-01340-4. Epub 2024 Jul 2.
4
Molecular Crowding: The History and Development of a Scientific Paradigm.
Chem Rev. 2024 Mar 27;124(6):3186-3219. doi: 10.1021/acs.chemrev.3c00615. Epub 2024 Mar 11.
5
Collision-Induced Unfolding Reveals Disease-Associated Stability Shifts in Mitochondrial Transfer Ribonucleic Acids.
J Am Chem Soc. 2024 Feb 21;146(7):4412-4420. doi: 10.1021/jacs.3c09230. Epub 2024 Feb 8.
6
Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble.
Nat Commun. 2023 Sep 6;14(1):5438. doi: 10.1038/s41467-023-41155-3.
7
Molecular Crowding Facilitates Ribozyme-Catalyzed RNA Assembly.
ACS Cent Sci. 2023 Aug 3;9(8):1670-1678. doi: 10.1021/acscentsci.3c00547. eCollection 2023 Aug 23.
8
When Phased without Water: Biophysics of Cellular Desiccation, from Biomolecules to Condensates.
Chem Rev. 2023 Jul 26;123(14):9010-9035. doi: 10.1021/acs.chemrev.2c00659. Epub 2023 May 3.
9
Dissecting the energetic architecture within an RNA tertiary structural motif via high-throughput thermodynamic measurements.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220485120. doi: 10.1073/pnas.2220485120. Epub 2023 Mar 10.
10
Apolar chemical environments compact unfolded RNAs and can promote folding.
Biophys Rep (N Y). 2021 Sep 8;1(1). doi: 10.1016/j.bpr.2021.100004. Epub 2021 Jul 21.

本文引用的文献

1
Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.
Biochemistry. 2013 Nov 19;52(46):8187-97. doi: 10.1021/bi400816s. Epub 2013 Nov 4.
2
Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3800-9. doi: 10.1073/pnas.1315742110. Epub 2013 Sep 16.
3
Crowders perturb the entropy of RNA energy landscapes to favor folding.
J Am Chem Soc. 2013 Jul 10;135(27):10055-63. doi: 10.1021/ja4030098. Epub 2013 Jul 1.
4
Decrease in RNA folding cooperativity by deliberate population of intermediates in RNA G-quadruplexes.
Angew Chem Int Ed Engl. 2013 Jan 7;52(2):683-6. doi: 10.1002/anie.201206475. Epub 2012 Nov 20.
5
RNA catalysis through compartmentalization.
Nat Chem. 2012 Nov;4(11):941-6. doi: 10.1038/nchem.1466. Epub 2012 Oct 14.
6
Cooperative tertiary interaction network guides RNA folding.
Cell. 2012 Apr 13;149(2):348-57. doi: 10.1016/j.cell.2012.01.057.
7
Thermodynamics of ligand binding to a heterogeneous RNA population in the malachite green aptamer.
Biochemistry. 2012 Jan 10;51(1):565-72. doi: 10.1021/bi201642p. Epub 2011 Dec 16.
8
Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12699-704. doi: 10.1073/pnas.1103382108. Epub 2011 Jul 8.
9
Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA.
J Am Chem Soc. 2011 Aug 10;133(31):11858-61. doi: 10.1021/ja2035128. Epub 2011 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验