Suppr超能文献

人体运动分析作为疲劳的衡量标准:基于隐马尔可夫模型的方法。

Human movement analysis as a measure for fatigue: a hidden Markov-based approach.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):470-81. doi: 10.1109/TNSRE.2013.2291327. Epub 2014 Jan 20.

Abstract

Fatigue influences the way a training exercise is performed and alters the kinematics of the movement. Monitoring the increase of fatigue during rehabilitation and sport exercises is beneficial to avoid the risk of injuries. This study investigates the use of a parametric hidden Markov model (PHMM) to estimate fatigue from observing kinematic changes in the way the exercise is performed. The PHMM is compared to linear regression. A top-level hidden Markov model with variable state transitions incorporates knowledge about the progress of fatigue during the exercise and the initial condition of a subject. The approach is tested on a squat database recorded with optical motion capture. The estimates of fatigue for a single squat, a set of squats, and an entire exercise correlate highly with subjective ratings.

摘要

疲劳会影响训练练习的进行方式,并改变运动的运动学。监测康复和运动练习过程中疲劳的增加有助于避免受伤的风险。本研究探讨了使用参数隐马尔可夫模型 (PHMM) 来估计通过观察运动方式的运动学变化而产生的疲劳。将 PHMM 与线性回归进行了比较。具有可变状态转换的顶级隐马尔可夫模型包含了有关运动过程中疲劳进展和受试者初始状态的知识。该方法在使用光学运动捕捉记录的深蹲数据库上进行了测试。单个深蹲、一组深蹲和整个运动的疲劳估计与主观评分高度相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验