Suppr超能文献

用于红外介导定量PCR中多重检测的频率编码激光诱导荧光

Frequency-encoded laser-induced fluorescence for multiplexed detection in infrared-mediated quantitative PCR.

作者信息

Schrell Adrian M, Roper Michael G

机构信息

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Dittmer Building, Tallahassee, FL 32306, USA.

出版信息

Analyst. 2014 Jun 7;139(11):2695-701. doi: 10.1039/c3an02334f.

Abstract

A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488 nm and 561 nm were modulated at 73 and 137 Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-blind manner using a single photomultiplier tube for detection and demodulated by frequency analysis. The resulting frequency domain signal resolved the contribution from the two fluorophores as well as the background from the IR lamp. The detection method was successfully used to measure amplification of DNA samples containing 10(4)-10(7) starting copies of template producing an amplification efficiency of 96%. The utility of this methodology was further demonstrated by simultaneous amplification of two genes from human genomic DNA using different color TaqMan probes. This method of multiplexing fluorescence detection with IR-qPCR is ideally suited as it allows isolation of the signals of interest from the background in the frequency domain and is expected to further reduce the complexity of multiplexed microfluidic IR-qPCR instrumentation.

摘要

一种调频荧光编码方法被用作增加在红外介导的聚合酶链反应期间监测的荧光团数量的手段。488nm和561nm的激光线分别以73Hz和137Hz进行调制,激发来自双链DNA嵌入染料EvaGreen和温度不敏感染料ROX的荧光。使用单个光电倍增管以色盲方式收集发射光进行检测,并通过频率分析进行解调。所得频域信号解析了两种荧光团的贡献以及来自红外灯的背景。该检测方法成功用于测量含有10(4)-10(7)个起始模板拷贝的DNA样品的扩增,扩增效率为96%。使用不同颜色的TaqMan探针从人基因组DNA中同时扩增两个基因进一步证明了该方法的实用性。这种将荧光检测与红外定量聚合酶链反应多重化的方法非常适合,因为它允许在频域中将感兴趣的信号与背景分离,并且有望进一步降低多重微流控红外定量聚合酶链反应仪器的复杂性。

相似文献

2
Multiplexing Fluorescence Anisotropy Using Frequency Encoding.
Anal Chem. 2016 Aug 16;88(16):7910-5. doi: 10.1021/acs.analchem.6b02131. Epub 2016 Aug 2.
5
One Sensor for Multiple Colors: Fluorescence Analysis of Microdroplets in Microbiological Screenings by Frequency-Division Multiplexing.
Anal Chem. 2019 Feb 19;91(4):3055-3061. doi: 10.1021/acs.analchem.8b05451. Epub 2019 Feb 8.
6
Quantitative polymerase chain reaction using infrared heating on a microfluidic chip.
Anal Chem. 2012 Mar 20;84(6):2825-9. doi: 10.1021/ac203307h. Epub 2012 Mar 2.
9
Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.
Lab Chip. 2011 Jul 7;11(13):2167-74. doi: 10.1039/c1lc20126c. Epub 2011 May 17.
10
Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations.
Anal Biochem. 2005 Sep 1;344(1):33-42. doi: 10.1016/j.ab.2005.06.026.

引用本文的文献

1
Advancement of analytical modes in a multichannel, microfluidic droplet-based sample chopper employing phase-locked detection.
Anal Methods. 2018 Jul 28;10(28):3436-3443. doi: 10.1039/C8AY00947C. Epub 2018 Jun 5.
2
Frequency-Encoded Multicolor Fluorescence Imaging with Single-Photon-Counting Color-Blind Detection.
Biophys J. 2018 Aug 21;115(4):725-736. doi: 10.1016/j.bpj.2018.07.008. Epub 2018 Jul 12.
3
Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.
Biomicrofluidics. 2018 Mar 14;12(2):024109. doi: 10.1063/1.5023652. eCollection 2018 Mar.
4
Combined microfluidic-optical DNA analysis with single-base-pair sizing capability.
Biomed Opt Express. 2016 Nov 17;7(12):5201-5207. doi: 10.1364/BOE.7.005201. eCollection 2016 Dec 1.
5
Multiplexing Fluorescence Anisotropy Using Frequency Encoding.
Anal Chem. 2016 Aug 16;88(16):7910-5. doi: 10.1021/acs.analchem.6b02131. Epub 2016 Aug 2.

本文引用的文献

1
Low-power microwave-mediated heating for microchip-based PCR.
Lab Chip. 2013 Sep 7;13(17):3417-25. doi: 10.1039/c3lc50461a. Epub 2013 Jul 10.
4
Quantitative polymerase chain reaction using infrared heating on a microfluidic chip.
Anal Chem. 2012 Mar 20;84(6):2825-9. doi: 10.1021/ac203307h. Epub 2012 Mar 2.
5
Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip.
Biomed Opt Express. 2010 Aug 25;1(2):729-735. doi: 10.1364/BOE.1.000729.
6
Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip.
Lab Chip. 2011 Feb 21;11(4):679-83. doi: 10.1039/c0lc00449a. Epub 2010 Dec 7.
7
10
A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19272-7. doi: 10.1073/pnas.0604663103. Epub 2006 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验