Suppr超能文献

流线型表海洋玫瑰杆菌谱系的进化分析。

Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters.

机构信息

Department of Marine Sciences, University of Georgia, Athens, GA, USA.

Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.

出版信息

ISME J. 2014 Jul;8(7):1428-39. doi: 10.1038/ismej.2013.248. Epub 2014 Jan 23.

Abstract

The vast majority of surface ocean bacteria are uncultivated. Compared with their cultured relatives, they frequently exhibit a streamlined genome, reduced G+C content and distinct gene repertoire. These genomic traits are relevant to environmental adaptation, and have generally been thought to become fixed in marine bacterial populations through selection. Using single-cell genomics, we sequenced four uncultivated cells affiliated with the ecologically relevant Roseobacter clade and used a composition-heterogeneous Bayesian phylogenomic model to resolve these single-cell genomes into a new clade. This lineage has no representatives in culture, yet accounts for ∼35% of Roseobacters in some surface ocean waters. Analyses of multiple genomic traits, including genome size, G+C content and percentage of noncoding DNA, suggest that these single cells are representative of oceanic Roseobacters but divergent from isolates. Population genetic analyses showed that substitution of physicochemically dissimilar amino acids and replacement of G+C-rich to G+C-poor codons are accelerated in the uncultivated clade, processes that are explained equally well by genetic drift as by the more frequently invoked explanation of natural selection. The relative importance of drift vs selection in this clade, and perhaps in other marine bacterial clades with streamlined G+C-poor genomes, remains unresolved until more evidence is accumulated.

摘要

绝大多数海洋表面细菌尚未被培养。与它们已培养的亲缘相比,这些细菌通常具有精简的基因组、降低的 G+C 含量和独特的基因组合。这些基因组特征与环境适应有关,并且通常被认为是通过选择在海洋细菌种群中固定下来的。我们使用单细胞基因组学技术对隶属于生态相关的玫瑰杆菌群的四个未培养细胞进行了测序,并使用组成异质贝叶斯系统基因组模型将这些单细胞基因组解析为一个新的分支。该谱系在培养物中没有代表,但在一些海洋表面水中占玫瑰杆菌的约 35%。对包括基因组大小、G+C 含量和非编码 DNA 百分比在内的多个基因组特征的分析表明,这些单细胞代表了海洋玫瑰杆菌,但与分离株存在差异。种群遗传分析表明,在未培养的分支中,物理化学性质不同的氨基酸取代和富含 G+C 的密码子替换为富含 G+C 的密码子的速度加快,这一过程既可以用遗传漂变来解释,也可以用更常提到的自然选择来解释。在这个分支中,漂变与选择的相对重要性,以及可能在其他具有精简的 G+C 贫瘠基因组的海洋细菌分支中,仍有待更多证据的积累才能得到解决。

相似文献

1
Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters.
ISME J. 2014 Jul;8(7):1428-39. doi: 10.1038/ismej.2013.248. Epub 2014 Jan 23.
2
Genome content of uncultivated marine Roseobacters in the surface ocean.
Environ Microbiol. 2012 Jan;14(1):41-51. doi: 10.1111/j.1462-2920.2011.02528.x. Epub 2011 Aug 19.
3
Ecological Genomics of the Uncultivated Marine Roseobacter Lineage CHAB-I-5.
Appl Environ Microbiol. 2016 Jan 29;82(7):2100-2111. doi: 10.1128/AEM.03678-15.
4
Novel phage infecting the CHUG lineage reveals a diverse and globally distributed phage family.
mSphere. 2024 Jul 30;9(7):e0045824. doi: 10.1128/msphere.00458-24. Epub 2024 Jun 27.
5
Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage.
Nat Microbiol. 2016 May 16;1(7):16063. doi: 10.1038/nmicrobiol.2016.63.
6
How do divergent ecological strategies emerge among marine bacterioplankton lineages?
Trends Microbiol. 2015 Sep;23(9):577-84. doi: 10.1016/j.tim.2015.05.004. Epub 2015 Jun 4.
7
Evolution of divergent life history strategies in marine alphaproteobacteria.
mBio. 2013 Jul 9;4(4):e00373-13. doi: 10.1128/mBio.00373-13.
8
Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment.
Nature. 2004 Dec 16;432(7019):910-3. doi: 10.1038/nature03170.
9
Surface colonization by marine roseobacters: integrating genotype and phenotype.
Appl Environ Microbiol. 2009 Oct;75(19):6027-37. doi: 10.1128/AEM.01508-09. Epub 2009 Aug 7.
10
Diversity, ecology, and genomics of the Roseobacter clade: a short overview.
Arch Microbiol. 2008 Jun;189(6):531-9. doi: 10.1007/s00203-008-0353-y. Epub 2008 Feb 6.

引用本文的文献

1
Assessing a Role of Genetic Drift for Deep-Time Evolutionary Events.
Methods Mol Biol. 2022;2569:343-359. doi: 10.1007/978-1-0716-2691-7_17.
2
Genomic Analysis Reveals Adaptation of to the Hadal Ocean.
Appl Environ Microbiol. 2022 Aug 23;88(16):e0057522. doi: 10.1128/aem.00575-22. Epub 2022 Aug 2.
3
Beyond the ABCs-Discovery of Three New Plasmid Types in (RepQ, RepY, RepW).
Microorganisms. 2022 Mar 29;10(4):738. doi: 10.3390/microorganisms10040738.
4
A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH.
Front Microbiol. 2022 Mar 21;13:803241. doi: 10.3389/fmicb.2022.803241. eCollection 2022.
5
Tight Adherence (Tad) Pilus Genes Indicate Putative Niche Differentiation in Phytoplankton Bloom Associated .
Front Microbiol. 2021 Aug 10;12:718297. doi: 10.3389/fmicb.2021.718297. eCollection 2021.
6
Mechanisms driving genome reduction of a novel Roseobacter lineage.
ISME J. 2021 Dec;15(12):3576-3586. doi: 10.1038/s41396-021-01036-3. Epub 2021 Jun 18.
8
Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning.
ISME J. 2021 Apr;15(4):1248-1256. doi: 10.1038/s41396-020-00834-5. Epub 2020 Nov 23.
9
Genomic Characteristics and Potential Metabolic Adaptations of Hadal Trench and Bacteria Based on Single-Cell Genomics Analyses.
Front Microbiol. 2020 Jul 24;11:1739. doi: 10.3389/fmicb.2020.01739. eCollection 2020.
10

本文引用的文献

1
Evolution of divergent life history strategies in marine alphaproteobacteria.
mBio. 2013 Jul 9;4(4):e00373-13. doi: 10.1128/mBio.00373-13.
2
Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11463-8. doi: 10.1073/pnas.1304246110. Epub 2013 Jun 25.
3
Accumulation of slightly deleterious mutations in the mitochondrial genome: a hallmark of animal domestication.
Gene. 2013 Feb 15;515(1):28-33. doi: 10.1016/j.gene.2012.11.064. Epub 2012 Dec 10.
5
Streamlining and core genome conservation among highly divergent members of the SAR11 clade.
mBio. 2012 Sep 18;3(5). doi: 10.1128/mBio.00252-12. Print 2012.
6
MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.
Bioinformatics. 2012 Oct 15;28(20):2685-6. doi: 10.1093/bioinformatics/bts507. Epub 2012 Aug 24.
7
A selective force favoring increased G+C content in bacterial genes.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14504-7. doi: 10.1073/pnas.1205683109. Epub 2012 Aug 20.
8
The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss.
mBio. 2012 May 2;3(2). doi: 10.1128/mBio.00036-12. Print 2012.
9
Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide.
PLoS One. 2011;6(12):e28905. doi: 10.1371/journal.pone.0028905. Epub 2011 Dec 14.
10
Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage.
ISME J. 2012 Jun;6(6):1186-99. doi: 10.1038/ismej.2011.189. Epub 2011 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验