Suppr超能文献

行政数据在急性肾损伤识别中的表现及局限性

Performance and limitations of administrative data in the identification of AKI.

作者信息

Grams Morgan E, Waikar Sushrut S, MacMahon Blaithin, Whelton Seamus, Ballew Shoshana H, Coresh Josef

机构信息

Division of Nephrology and, §Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland;, †Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, ‡Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

出版信息

Clin J Am Soc Nephrol. 2014 Apr;9(4):682-9. doi: 10.2215/CJN.07650713. Epub 2014 Jan 23.

Abstract

BACKGROUND AND OBJECTIVES

Billing codes are frequently used to identify AKI events in epidemiologic research. The goals of this study were to validate billing code-identified AKI against the current AKI consensus definition and to ascertain whether sensitivity and specificity vary by patient characteristic or over time.

DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The study population included 10,056 Atherosclerosis Risk in Communities study participants hospitalized between 1996 and 2008. Billing code-identified AKI was compared with the 2012 Kidney Disease Improving Global Outcomes (KDIGO) creatinine-based criteria (AKIcr) and an approximation of the 2012 KDIGO creatinine- and urine output-based criteria (AKIcr_uop) in a subset with available outpatient data. Sensitivity and specificity of billing code-identified AKI were evaluated over time and according to patient age, race, sex, diabetes status, and CKD status in 546 charts selected for review, with estimates adjusted for sampling technique.

RESULTS

A total of 34,179 hospitalizations were identified; 1353 had a billing code for AKI. The sensitivity of billing code-identified AKI was 17.2% (95% confidence interval [95% CI], 13.2% to 21.2%) compared with AKIcr (n=1970 hospitalizations) and 11.7% (95% CI, 8.8% to 14.5%) compared with AKIcr_uop (n=1839 hospitalizations). Specificity was >98% in both cases. Sensitivity was significantly higher in the more recent time period (2002-2008) and among participants aged 65 years and older. Billing code-identified AKI captured a more severe spectrum of disease than did AKIcr and AKIcr_uop, with a larger proportion of patients with stage 3 AKI (34.9%, 19.7%, and 11.5%, respectively) and higher in-hospital mortality (41.2%, 18.7%, and 12.8%, respectively).

CONCLUSIONS

The use of billing codes to identify AKI has low sensitivity compared with the current KDIGO consensus definition, especially when the urine output criterion is included, and results in the identification of a more severe phenotype. Epidemiologic studies using billing codes may benefit from a high specificity, but the variation in sensitivity may result in bias, particularly when trends over time are the outcome of interest.

摘要

背景与目的

在流行病学研究中,计费代码常用于识别急性肾损伤(AKI)事件。本研究的目的是根据当前的AKI共识定义验证通过计费代码识别的AKI,并确定敏感性和特异性是否因患者特征或时间而有所不同。

设计、地点、参与者及测量方法:研究人群包括1996年至2008年间住院的10,056名社区动脉粥样硬化风险研究参与者。在有门诊数据的子集中,将通过计费代码识别的AKI与2012年改善全球肾脏病预后组织(KDIGO)基于肌酐的标准(AKIcr)以及2012年KDIGO基于肌酐和尿量的标准的近似值(AKIcr_uop)进行比较。在为审查而选择的546份病历中,根据患者年龄、种族、性别、糖尿病状态和慢性肾脏病(CKD)状态,对通过计费代码识别的AKI的敏感性和特异性进行了随时间的评估,并对抽样技术进行了估计调整。

结果

共识别出34,179次住院;1353次有AKI的计费代码。与AKIcr(1970次住院)相比,通过计费代码识别的AKI的敏感性为17.2%(95%置信区间[95%CI],13.2%至21.2%),与AKIcr_uop(1839次住院)相比为11.7%(95%CI,8.8%至14.5%)。两种情况下特异性均>98%。在最近时间段(2002 - 2008年)以及65岁及以上参与者中,敏感性显著更高。与AKIcr和AKIcr_uop相比,通过计费代码识别的AKI涵盖了更严重的疾病谱,3期AKI患者比例更高(分别为34.9%、19.7%和11.5%),住院死亡率也更高(分别为41.2%、18.7%和12.8%)。

结论

与当前的KDIGO共识定义相比,使用计费代码识别AKI的敏感性较低,尤其是当纳入尿量标准时,并且会导致识别出更严重的表型。使用计费代码的流行病学研究可能受益于高特异性,但敏感性的差异可能导致偏差,特别是当随时间的趋势是感兴趣的结果时。

相似文献

1
Performance and limitations of administrative data in the identification of AKI.
Clin J Am Soc Nephrol. 2014 Apr;9(4):682-9. doi: 10.2215/CJN.07650713. Epub 2014 Jan 23.
2
AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions.
Clin J Am Soc Nephrol. 2015 Apr 7;10(4):554-61. doi: 10.2215/CJN.01900214. Epub 2015 Feb 3.
4
Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals.
Clin J Am Soc Nephrol. 2014 Jan;9(1):12-20. doi: 10.2215/CJN.02730313. Epub 2013 Oct 31.
5
7
Definition of hourly urine output influences reported incidence and staging of acute kidney injury.
BMC Nephrol. 2020 Jan 15;21(1):19. doi: 10.1186/s12882-019-1678-2.
8
The Diagnosis-Wide Landscape of Hospital-Acquired AKI.
Clin J Am Soc Nephrol. 2017 Jun 7;12(6):874-884. doi: 10.2215/CJN.10981016. Epub 2017 May 11.
9
Serum Creatinine Back-Estimation in Cardiac Surgery Patients: Misclassification of AKI Using Existing Formulae and a Data-Driven Model.
Clin J Am Soc Nephrol. 2016 Mar 7;11(3):395-404. doi: 10.2215/CJN.03560315. Epub 2016 Jan 22.
10
Association between AKI and long-term renal and cardiovascular outcomes in United States veterans.
Clin J Am Soc Nephrol. 2014 Mar;9(3):448-56. doi: 10.2215/CJN.02440213. Epub 2013 Dec 5.

引用本文的文献

1
The effect of chronic kidney disease on adverse in-hospital outcomes after partial nephrectomy.
World J Urol. 2025 Sep 1;43(1):524. doi: 10.1007/s00345-025-05892-y.
3
Temporal Trends in Acute Kidney Injury in Hospitalizations From 2009-2018 in Alberta: A Retrospective Population-Based Cohort Study.
Kidney Med. 2025 May 16;7(7):101029. doi: 10.1016/j.xkme.2025.101029. eCollection 2025 Jul.
4
The Effect of Chronic Kidney Disease on Adverse In-Hospital Outcomes at Radical Prostatectomy.
Int J Urol. 2025 Jun;32(6):710-717. doi: 10.1111/iju.70038. Epub 2025 Mar 14.
6
Estimating the Association Between Outdoor Temperature and Acute Kidney Injury Using Alternative Case Definitions.
J Occup Environ Med. 2025 May 1;67(5):e287-e293. doi: 10.1097/JOM.0000000000003333. Epub 2025 Feb 7.
7
Identifying acute kidney injury in children: comparing electronic alerts with health record data.
BMC Nephrol. 2025 Feb 13;26(1):75. doi: 10.1186/s12882-025-03961-3.
9
pyAKI-An open source solution to automated acute kidney injury classification.
PLoS One. 2025 Jan 3;20(1):e0315325. doi: 10.1371/journal.pone.0315325. eCollection 2025.
10
Assessing acute kidney injury risk after COVID vaccination and infection in a large cohort study.
NPJ Vaccines. 2024 Nov 8;9(1):213. doi: 10.1038/s41541-024-00964-3.

本文引用的文献

1
KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury.
Am J Kidney Dis. 2013 May;61(5):649-72. doi: 10.1053/j.ajkd.2013.02.349. Epub 2013 Mar 15.
3
Trends in acute kidney injury, associated use of dialysis, and mortality after cardiac surgery, 1999 to 2008.
Ann Thorac Surg. 2013 Jan;95(1):20-8. doi: 10.1016/j.athoracsur.2012.05.131. Epub 2012 Dec 25.
4
Temporal changes in incidence of dialysis-requiring AKI.
J Am Soc Nephrol. 2013 Jan;24(1):37-42. doi: 10.1681/ASN.2012080800. Epub 2012 Dec 6.
5
Secular trends in acute dialysis after elective major surgery--1995 to 2009.
CMAJ. 2012 Aug 7;184(11):1237-45. doi: 10.1503/cmaj.110895. Epub 2012 Jun 25.
6
Estimating baseline kidney function in hospitalized patients with impaired kidney function.
Clin J Am Soc Nephrol. 2012 May;7(5):712-9. doi: 10.2215/CJN.10821011. Epub 2012 Mar 15.
7
Oliguria is an early predictor of higher mortality in critically ill patients.
Kidney Int. 2011 Oct;80(7):760-7. doi: 10.1038/ki.2011.150. Epub 2011 Jun 29.
10
A comparison of three methods to estimate baseline creatinine for RIFLE classification.
Nephrol Dial Transplant. 2010 Dec;25(12):3911-8. doi: 10.1093/ndt/gfp766. Epub 2010 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验