Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy; Laboratory of Ecohydrology ECHO/IIE/ENAC, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
Ecol Lett. 2014 Apr;17(4):426-34. doi: 10.1111/ele.12242. Epub 2014 Jan 26.
River networks define ecological corridors characterised by unidirectional streamflow, which may impose downstream drift to aquatic organisms or affect their movement. Animals and plants manage to persist in riverine ecosystems, though, which in fact harbour high biological diversity. Here, we study metapopulation persistence in river networks analysing stage-structured populations that exploit different dispersal pathways, both along-stream and overland. Using stability analysis, we derive a novel criterion for metapopulation persistence in arbitrarily complex landscapes described as spatial networks. We show how dendritic geometry and overland dispersal can promote population persistence, and that their synergism provides an explanation of the so-called `drift paradox'. We also study the geography of the initial spread of a species and place it in the context of biological invasions. Applications concerning the persistence of stream salamanders in the Shenandoah river, and the spread of two invasive species in the Mississippi-Missouri are also discussed.
河流网络定义了具有单向水流特征的生态廊道,这可能会对水生生物造成下游漂移或影响它们的运动。然而,动物和植物设法在河流生态系统中生存,实际上这里拥有高度的生物多样性。在这里,我们通过分析利用不同扩散途径(包括沿流和陆上扩散)的具有阶段结构的种群,研究了河流网络中的复合种群持续存在问题。我们使用稳定性分析,为在任意复杂的景观中描述为空间网络的复合种群持续存在推导了一个新的准则。我们展示了树枝状几何形状和陆上扩散如何促进种群的持续存在,并且它们的协同作用提供了所谓的“漂移悖论”的解释。我们还研究了物种初始传播的地理范围,并将其置于生物入侵的背景下。此外,还讨论了溪流蝾螈在谢南多厄河中的生存以及两种入侵物种在密西西比-密苏里河流域的传播等应用问题。