Air Force Research Laboratory.
Cogn Sci. 2014 Apr;38(3):580-98. doi: 10.1111/cogs.12103. Epub 2014 Jan 24.
Successfully explaining and replicating the complexity and generality of human and animal learning will require the integration of a variety of learning mechanisms. Here, we introduce a computational model which integrates associative learning (AL) and reinforcement learning (RL). We contrast the integrated model with standalone AL and RL models in three simulation studies. First, a synthetic grid-navigation task is employed to highlight performance advantages for the integrated model in an environment where the reward structure is both diverse and dynamic. The second and third simulations contrast the performances of the three models in behavioral experiments, demonstrating advantages for the integrated model in accounting for behavioral data.
成功解释和复制人类和动物学习的复杂性和通用性将需要整合各种学习机制。在这里,我们引入了一个整合了联想学习 (AL) 和强化学习 (RL) 的计算模型。我们在三个模拟研究中,将整合模型与独立的 AL 和 RL 模型进行了对比。首先,我们使用一个合成的网格导航任务来突出在奖励结构既多样又动态的环境中,整合模型的性能优势。第二和第三次模拟对比了这三个模型在行为实验中的表现,表明整合模型在解释行为数据方面具有优势。