Suppr超能文献

MscL 周质脂界面处蛋白质-蛋白质相互作用的动力学。

Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface.

机构信息

Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.

Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, Texas.

出版信息

Biophys J. 2014 Jan 21;106(2):375-81. doi: 10.1016/j.bpj.2013.12.006.

Abstract

MscL, the highly conserved bacterial mechanosensitive channel of large conductance, is one of the best studied mechanosensors. It is a homopentameric channel that serves as a biological emergency release valve that prevents cell lysis from acute osmotic stress. We previously showed that the periplasmic region of the protein, particularly a single residue located at the TM1/periplasmic loop interface, F47 of Staphylococcus aureus and I49 of Escherichia coli MscL, plays a major role in both the open dwell time and mechanosensitivity of the channel. Here, we introduced cysteine mutations at these sites and found they formed disulfide bridges that decreased the channel open dwell time. By scanning a likely interacting domain, we also found that these sites could be disulfide trapped by addition of cysteine mutations in other locations within the periplasmic loop of MscL, and this also led to rapid channel kinetics. Together, the data suggest structural rearrangements and protein-protein interactions that occur within this region upon normal gating, and further suggest that locking portions of the channel into a transition state decreases the stability of the open state.

摘要

MscL 是高度保守的细菌机械敏感通道,是研究得最多的机械感受器之一。它是一个同五聚体通道,作为一种生物紧急释放阀,可以防止细胞因急性渗透压胁迫而裂解。我们之前的研究表明,该蛋白的周质区域,特别是位于 TM1/周质环界面的单个残基,金黄色葡萄球菌的 F47 和大肠杆菌 MscL 的 I49,在通道的开放停留时间和机械敏感性方面都起着重要作用。在这里,我们在这些位点引入了半胱氨酸突变,发现它们形成了二硫键,从而减少了通道的开放停留时间。通过扫描一个可能的相互作用结构域,我们还发现这些位点可以通过在 MscL 的周质环的其他位置引入半胱氨酸突变而被二硫键捕获,这也导致了快速的通道动力学。总的来说,这些数据表明在正常门控过程中该区域发生的结构重排和蛋白质-蛋白质相互作用,进一步表明将通道的部分锁定在过渡状态会降低开放状态的稳定性。

相似文献

1
Dynamics of protein-protein interactions at the MscL periplasmic-lipid interface.
Biophys J. 2014 Jan 21;106(2):375-81. doi: 10.1016/j.bpj.2013.12.006.
2
Chimeras reveal a single lipid-interface residue that controls MscL channel kinetics as well as mechanosensitivity.
Cell Rep. 2013 Feb 21;3(2):520-7. doi: 10.1016/j.celrep.2013.01.018. Epub 2013 Feb 14.
3
Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics.
FASEB J. 2014 Dec;28(12):5234-41. doi: 10.1096/fj.14-259309. Epub 2014 Sep 15.
4
The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity.
Eur Biophys J. 2005 Jul;34(5):403-12. doi: 10.1007/s00249-005-0476-x. Epub 2005 Apr 6.
5
Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL.
Biochemistry. 2013 Aug 13;52(32):5415-20. doi: 10.1021/bi400790j. Epub 2013 Aug 1.
6
The dynamics of protein-protein interactions between domains of MscL at the cytoplasmic-lipid interface.
Channels (Austin). 2012 Jul-Aug;6(4):255-61. doi: 10.4161/chan.20756. Epub 2012 Jul 1.
8
Disulfide trapping the mechanosensitive channel MscL into a gating-transition state.
Biophys J. 2007 Feb 15;92(4):1224-32. doi: 10.1529/biophysj.106.090316. Epub 2006 Nov 17.
9
Scanning MscL Channels with Targeted Post-Translational Modifications for Functional Alterations.
PLoS One. 2015 Sep 14;10(9):e0137994. doi: 10.1371/journal.pone.0137994. eCollection 2015.

引用本文的文献

1
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target.
Microbiol Mol Biol Rev. 2020 Jan 15;84(1). doi: 10.1128/MMBR.00055-19. Print 2020 Feb 19.
2
Force transduction and lipid binding in MscL: a continuum-molecular approach.
PLoS One. 2014 Dec 1;9(12):e113947. doi: 10.1371/journal.pone.0113947. eCollection 2014.
3
Electrostatics at the membrane define MscL channel mechanosensitivity and kinetics.
FASEB J. 2014 Dec;28(12):5234-41. doi: 10.1096/fj.14-259309. Epub 2014 Sep 15.

本文引用的文献

1
Chimeras reveal a single lipid-interface residue that controls MscL channel kinetics as well as mechanosensitivity.
Cell Rep. 2013 Feb 21;3(2):520-7. doi: 10.1016/j.celrep.2013.01.018. Epub 2013 Feb 14.
2
Structural investigation of MscL gating using experimental data and coarse grained MD simulations.
PLoS Comput Biol. 2012;8(9):e1002683. doi: 10.1371/journal.pcbi.1002683. Epub 2012 Sep 20.
3
The dynamics of protein-protein interactions between domains of MscL at the cytoplasmic-lipid interface.
Channels (Austin). 2012 Jul-Aug;6(4):255-61. doi: 10.4161/chan.20756. Epub 2012 Jul 1.
4
Sensing and responding to membrane tension: the bacterial MscL channel as a model system.
Biophys J. 2012 Jul 18;103(2):169-74. doi: 10.1016/j.bpj.2012.06.021. Epub 2012 Jul 17.
5
The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves.
J Bacteriol. 2012 Sep;194(18):4802-9. doi: 10.1128/JB.00576-12. Epub 2012 Jun 8.
6
The oligomeric state of the truncated mechanosensitive channel of large conductance shows no variance in vivo.
Protein Sci. 2011 Sep;20(9):1638-42. doi: 10.1002/pro.686. Epub 2011 Jul 19.
8
An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel.
FASEB J. 2011 Feb;25(2):694-702. doi: 10.1096/fj.10-170878. Epub 2010 Nov 10.
10
On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface.
Biophys J. 2008 Sep;95(5):2283-91. doi: 10.1529/biophysj.107.127423. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验