Suppr超能文献

一种改进的方法,用于遥感水胁迫对森林 C 吸收的影响。

An improved approach for remotely sensing water stress impacts on forest C uptake.

机构信息

Department of Geography, Indiana University, 701 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA.

出版信息

Glob Chang Biol. 2014 Sep;20(9):2856-66. doi: 10.1111/gcb.12537. Epub 2014 Apr 12.

Abstract

Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought.

摘要

鉴于森林是大气 CO2 的主要陆地汇,未来碳 (C) 储存的预测取决于森林对气候变化的响应。基于冠层“绿色度”(例如归一化差异植被指数;NDVI)的估算模型,通常用于估算总初级生产力(GPP)对水分胁迫的响应。然而,许多森林对水分胁迫的光谱敏感性较低(SSWS)——这里定义为 GPP 因干旱而下降,但绿色度不变。当前基于卫星的 GPP 估算使用蒸气压亏缺 (VPD) 标量来解释森林的 SSWS 较低,但未能捕捉到它们对水分胁迫的响应。我们的目标是描述森林和非森林生态系统之间 SSWS 的差异,并开发一种改进的框架,以预测 SSWS 较低的森林中水分胁迫对 GPP 的影响。首先,我们将两个独立的干旱指数与 2000 年至 2011 年美国大陆的 NDVI 数据进行配对,并研究了水分胁迫与 NDVI 之间的关系。我们发现,无论干旱指数或持续时间如何,森林的 SSWS 均低于非森林。然后,我们比较了卫星估算的 GPP 与两个 SSWS 较低的落叶阔叶林(密苏里奥扎克斯(MO)和摩根门罗州立森林(MMSF)美国通量站点)的涡度协方差观测的 GPP。使用 VPD 标量的 GPP 模型估算值与 MO(r(2) = 0.09)和 MMSF(r(2) = 0.38)的 GPP 观测值相关性较差。当我们将具有高 SSWS 的相邻生态系统对水分胁迫的 NDVI 响应纳入仅基于温度和绿色度的模型中时,我们大大提高了 MO 上 GPP 的预测(r(2) = 0.83)和 MMSF 严重干旱年份的预测(r(2) = 0.82)。总的来说,我们的结果表明,能够捕捉生态系统之间 SSWS 变化的大规模 GPP 估算可以提高森林在干旱条件下对 C 吸收的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验