Komodziński Krzysztof, Lepczyńska Jolanta, Gdaniec Zofia, Bartolotti Libero, Delley Bernard, Franzen Stefan, Skalski Bohdan
Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
Photochem Photobiol Sci. 2014 Mar;13(3):563-73. doi: 10.1039/c3pp50385b. Epub 2014 Jan 28.
The photochemistry of 6-amino-2-azidopurine, 2-amino-6-azidopurine and 2,6-diazidopurine ribonucleosides has been investigated in aqueous solutions under aerobic and anaerobic conditions. Near UV irradiation of 6-amino-2-azido-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)purine and 2-amino-6-azido-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)purine in the presence of oxygen leads to efficient formation of 6-amino-2-nitro-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)purine and 2-amino-6-nitro-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)purine. Under anaerobic conditions, both azidopurine ribonucleosides preferentially undergo photoreduction to 2,6-diamino-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)purine. The structures of the photoproducts formed were confirmed by UV, NMR and HR ESI-TOF MS spectral data. The photoproducts observed in this study for the aminoazidopurines are distinctly different from those observed previously for 6-azidopurine. When no amino group is present, the photochemistry of 6-azidopurine leads to the formation of a 1,3,5-triazepinone nucleoside. The energetics of the 6-nitreno moiety along both oxidation and ring expansion pathways was calculated using the nudged elastic band (NEB) method based on density functional theory (DFT) using DMol3. The role of the 2-amino group in regulating the competition between these pathways was elucidated in order to explain how the striking difference in reactivity under irradiation arises from the greater spin density on the 6-nitreno-9-methyl-9H-purin-2-amine, which essentially eliminates the barrier to oxidation observed in 6-nitreno-9-methyl-9H-purine. Finally, the importance of tetrazolyl intermediates for the photochemical activation of azide bond cleavage to release N2 and form the 6-nitreno group was also corroborated using the DFT methods.
在有氧和无氧条件下,对6-氨基-2-叠氮嘌呤、2-氨基-6-叠氮嘌呤和2,6-二叠氮嘌呤核糖核苷在水溶液中的光化学性质进行了研究。在氧气存在下,对6-氨基-2-叠氮基-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤和2-氨基-6-叠氮基-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤进行近紫外光照射,可有效形成6-氨基-2-硝基-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤和2-氨基-6-硝基-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤。在无氧条件下,两种叠氮嘌呤核糖核苷均优先发生光还原反应生成2,6-二氨基-9-(2',3',5'-三-O-乙酰基-β-D-呋喃核糖基)嘌呤。通过紫外光谱、核磁共振光谱和高分辨电喷雾电离飞行时间质谱数据对所形成的光产物结构进行了确认。本研究中观察到的氨基叠氮嘌呤的光产物与先前观察到的6-叠氮嘌呤的光产物明显不同。当不存在氨基时,6-叠氮嘌呤的光化学过程会导致形成一种1,3,5-三氮杂环庚三酮核苷。使用基于密度泛函理论(DFT)的推挤弹性带(NEB)方法,利用DMol3计算了6-氮宾部分沿氧化和环扩展途径的能量。阐明了2-氨基在调节这些途径之间竞争中的作用,以解释照射下反应性的显著差异是如何源于6-氮宾-9-甲基-9H-嘌呤-2-胺上更大的自旋密度,这基本上消除了在6-氮宾-9-甲基-9H-嘌呤中观察到的氧化障碍。最后,还使用DFT方法证实了四唑基中间体对于叠氮键光化学活化以释放N2并形成6-氮宾基团的重要性。