Suppr超能文献

在 Scheldt 河口建立金属形态模型:结合灵活分辨率输送模型与经验函数。

Modelling metal speciation in the Scheldt Estuary: combining a flexible-resolution transport model with empirical functions.

机构信息

Vrije Universiteit Brussel, Analytical, Pleinlaan 2, BE-1050 Brussels, Belgium.

Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (IMMC), 4 Avenue G. Lemaître, bte L4.05.02, BE-1348 Louvain-la-Neuve, Belgium; Université catholique de Louvain, Georges Lemaître Centre for Earth and Climate Research (TECLIM), Place Louis Pasteur 2, bte L4.03.08, BE-1348 Louvain-la-Neuve, Belgium.

出版信息

Sci Total Environ. 2014 Apr 1;476-477:346-58. doi: 10.1016/j.scitotenv.2013.12.047. Epub 2014 Jan 26.

Abstract

Predicting metal concentrations in surface waters is an important step in the understanding and ultimately the assessment of the ecological risk associated with metal contamination. In terms of risk an essential piece of information is the accurate knowledge of the partitioning of the metals between the dissolved and particulate phases, as the former species are generally regarded as the most bioavailable and thus harmful form. As a first step towards the understanding and prediction of metal speciation in the Scheldt Estuary (Belgium, the Netherlands), we carried out a detailed analysis of a historical dataset covering the period 1982-2011. This study reports on the results for two selected metals: Cu and Cd. Data analysis revealed that both the total metal concentration and the metal partitioning coefficient (Kd) could be predicted using relatively simple empirical functions of environmental variables such as salinity and suspended particulate matter concentration (SPM). The validity of these functions has been assessed by their application to salinity and SPM fields simulated by the hydro-environmental model SLIM. The high-resolution total and dissolved metal concentrations reconstructed using this approach, compared surprisingly well with an independent set of validation measurements. These first results from the combined mechanistic-empirical model approach suggest that it may be an interesting tool for risk assessment studies, e.g. to help identify conditions associated with elevated (dissolved) metal concentrations.

摘要

预测地表水中的金属浓度是理解和最终评估与金属污染相关的生态风险的重要步骤。就风险而言,准确了解金属在溶解相与颗粒相之间的分配情况是必不可少的信息,因为前者通常被认为是最具生物可利用性和因此也是最有害的形态。作为理解和预测斯海尔德河口(比利时、荷兰)金属形态的第一步,我们对涵盖 1982 年至 2011 年期间的历史数据集进行了详细分析。本研究报告了两种选定金属(Cu 和 Cd)的结果。数据分析表明,总金属浓度和金属分配系数(Kd)都可以使用盐度和悬浮颗粒物浓度(SPM)等环境变量的相对简单经验函数进行预测。这些函数的有效性已通过将其应用于水力环境模型 SLIM 模拟的盐度和 SPM 场来评估。使用这种方法重建的高分辨率总金属和溶解金属浓度与一组独立的验证测量结果非常吻合。这种基于机制-经验模型方法的初步结果表明,它可能是风险评估研究的一种有趣工具,例如,帮助确定与升高的(溶解)金属浓度相关的条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验