Chemistry and Drug Delivery Group, Medway School of Pharmacy, University of Kent, ME4 4TB Kent, UK; Pharmaceutics and Pharmaceutical Technology Department, School of Pharmacy, University of Damascus, Syria.
School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
Int J Pharm. 2014 Apr 10;464(1-2):53-64. doi: 10.1016/j.ijpharm.2014.01.026. Epub 2014 Jan 27.
Paracetamol is a popular over-the-counter analgesic and a challenging model drug due to its poor technological and biopharmaceutical properties such as flowability, compressibility, compactibility and wettability. This work was aimed to alter the crystal habit of paracetamol from elongated to polyhedral-angular via particle engineering whilst maintaining the stable polymorphic form (form I: monoclinic form). The engineered paracetamol crystals obtained in the present investigation showed better technological and biopharmaceutical properties in comparison to the commercial paracetamol. Engineered paracetamol crystals were obtained using antisolvent crystallization technique in the presence of various concentrations (0.1, 0.5 and 1%, w/w) of additives, namely, polyvinyl alcohol (PVA), Avicel PH 102 (microcrystalline cellulose), Brij 58, methylcellulose (MC) and polyethylene glycol having different molecular weights (PEGs 1500, 6000 and 8000). Paracetamols crystallized in the presence of Avicel (or physically mixed with Avicel), Brij 58 and PEG 6000 demonstrated the best compactibility over a range of compaction pressures. Brij-crystallized paracetamol provided the fastest dissolution rate among all the paracetamol batches. Paracetamols crystallized in the presence of PVA or Avicel, or physically mixed with Avicel demonstrated a reduced degree of crystallinity in comparison to the other paracetamols. This study showed that the type, the grade and the concentration of additives could influence the physical stability such as flow, crystallinity and polymorphic transformation of paracetamol, the technological and biopharmaceutical properties of paracetamol. Stable polymorphic form of paracetamol with optimal tableting characteristics can be achieved through particle engineering.
对乙酰氨基酚是一种常用的非处方止痛药,由于其流动性、可压缩性、压缩性和润湿性等较差的技术和生物制药特性,成为一种具有挑战性的模型药物。本工作旨在通过颗粒工程将对乙酰氨基酚的晶体形态从细长变为多面角,同时保持稳定的多晶型形式(I 型:单斜晶型)。与商业对乙酰氨基酚相比,本研究中获得的工程对乙酰氨基酚晶体具有更好的技术和生物制药特性。通过反溶剂结晶技术,在不同浓度(0.1、0.5 和 1%,w/w)的添加剂(聚乙烯醇(PVA)、微晶纤维素(Avicel PH 102)、Brij 58、甲基纤维素(MC)和不同分子量的聚乙二醇(PEGs 1500、6000 和 8000)存在的情况下获得了工程对乙酰氨基酚晶体。在 Avicel(或与 Avicel 物理混合)、Brij 58 和 PEG 6000 存在下结晶的对乙酰氨基酚在一系列压实压力下表现出最佳的可压缩性。与所有对乙酰氨基酚批次相比,Brij 结晶的对乙酰氨基酚提供了最快的溶解速率。在 PVA 或 Avicel 存在下结晶的对乙酰氨基酚或与 Avicel 物理混合的对乙酰氨基酚与其他对乙酰氨基酚相比,结晶度降低。这项研究表明,添加剂的类型、等级和浓度可能会影响对乙酰氨基酚的物理稳定性,如流动性、结晶度和多晶型转变,以及对乙酰氨基酚的技术和生物制药特性。通过颗粒工程可以实现具有最佳压片特性的稳定多晶型形式的对乙酰氨基酚。