Suppr超能文献

棕榈酸盐与肌红蛋白生理状态的相互作用。

Palmitate interaction with physiological states of myoglobin.

作者信息

Shih Lifan, Chung Youngran, Sriram Renuka, Jue Thomas

出版信息

Biochim Biophys Acta. 2014 Jan;1840(1):656-66. doi: 10.1016/j.bbagen.2013.10.028.

Abstract

BACKGROUND

Previous studies have shown that palmitate (PA) can bind specifically and non-specifically to Fe(III)MbCN. The present study has observed PA interaction with physiological states of Fe(II)Mb, and the observations support the hypothesis that Mb may have a potential role in facilitating intracellular fatty acid transport.

METHODS

1H NMR spectra measurements of the Mb signal during PA titration show signal changes consistent with specific and non-specific binding.

RESULTS

Palmitate (PA) interacts differently with physiological states of Mb. Deoxy Mb does not interact specifically or non-specifically with PA, while the carbonmonoxy myoglobin (MbCO) interaction with PA decreases the intensity of selective signals and produces a 0.15ppmupfield shift of the PAmethylene peak. The selective signal change upon PA titration provides a basis to determine an apparent PA binding constant,which serves to create a model comparing the competitive PA binding and facilitated fatty acid transport of Mb and fatty acid binding protein(FABP).

CONCLUSIONS

Given contrasting PA interaction of ligated vs. unligated Mb, the cellular fatty acid binding protein(FABP) and Mb concentration in the cell, the reported cellular diffusion coefficients, the PA dissociation constants from ligated Mb and FABP, a fatty acid flux model suggests that Mb can compete with FABP transporting cellular fatty acid.

GENERAL SIGNIFICANCE

Under oxygenated conditions and continuous energy demand, Mb dependent fatty acid transport could influence the cell's preference for carbohydrate or fatty acid as a fuel source and regulate fatty acid metabolism.

摘要

背景

先前的研究表明,棕榈酸(PA)可特异性和非特异性地与高铁肌红蛋白氰化物(Fe(III)MbCN)结合。本研究观察了PA与亚铁肌红蛋白(Fe(II)Mb)生理状态的相互作用,这些观察结果支持了肌红蛋白(Mb)可能在促进细胞内脂肪酸转运中发挥潜在作用的假说。

方法

在PA滴定过程中对Mb信号进行的1H NMR光谱测量显示,信号变化与特异性和非特异性结合一致。

结果

棕榈酸(PA)与Mb的生理状态相互作用不同。脱氧Mb与PA既不发生特异性相互作用也不发生非特异性相互作用,而一氧化碳肌红蛋白(MbCO)与PA的相互作用降低了选择性信号的强度,并使PA亚甲基峰产生0.15ppm的上移。PA滴定后的选择性信号变化为确定表观PA结合常数提供了依据,该常数用于创建一个模型,比较Mb和脂肪酸结合蛋白(FABP)对PA的竞争性结合以及促进脂肪酸转运的能力。

结论

鉴于结合态与未结合态Mb对PA的相互作用存在差异、细胞中脂肪酸结合蛋白(FABP)和Mb的浓度、已报道的细胞扩散系数、结合态Mb和FABP的PA解离常数,一个脂肪酸通量模型表明Mb可以与FABP竞争转运细胞内脂肪酸。

普遍意义

在有氧条件和持续能量需求下,依赖Mb的脂肪酸转运可能会影响细胞对碳水化合物或脂肪酸作为燃料来源的偏好,并调节脂肪酸代谢。

相似文献

1
Palmitate interaction with physiological states of myoglobin.
Biochim Biophys Acta. 2014 Jan;1840(1):656-66. doi: 10.1016/j.bbagen.2013.10.028.
2
Effect of fatty acid interaction on myoglobin oxygen affinity and triglyceride metabolism.
J Physiol Biochem. 2016 Aug;73(3):359-370. doi: 10.1007/s13105-017-0559-z. Epub 2017 Mar 29.
3
Interaction of fatty acid with myoglobin.
FEBS Lett. 2008 Oct 29;582(25-26):3643-9. doi: 10.1016/j.febslet.2008.09.047. Epub 2008 Oct 7.
4
Interaction of myoglobin with oleic acid.
Chem Phys Lipids. 2015 Oct;191:115-22. doi: 10.1016/j.chemphyslip.2015.07.010. Epub 2015 Jul 26.
5
Differential Interaction of Myoglobin with Select Fatty Acids of Carbon Chain Lengths C8 to C16.
Lipids. 2017 Aug;52(8):711-727. doi: 10.1007/s11745-017-4272-z. Epub 2017 Jun 21.
6
Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin.
Arch Biochem Biophys. 2018 Oct 1;655:56-66. doi: 10.1016/j.abb.2018.07.024. Epub 2018 Aug 6.
8
Novel Molecular Interactions of Acylcarnitines and Fatty Acids with Myoglobin.
J Biol Chem. 2016 Nov 25;291(48):25133-25143. doi: 10.1074/jbc.M116.754978. Epub 2016 Oct 7.
10
Inhibition of binding to fatty acid binding protein reduces the intracellular transport of fatty acids.
Am J Physiol. 1996 Jul;271(1 Pt 1):G113-20. doi: 10.1152/ajpgi.1996.271.1.G113.

引用本文的文献

1
A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin.
Physiol Rev. 2024 Oct 1;104(4):1611-1642. doi: 10.1152/physrev.00031.2023. Epub 2024 May 2.
2
Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis.
Cells. 2023 Sep 8;12(18):2240. doi: 10.3390/cells12182240.
5
Myoglobin regulates fatty acid trafficking and lipid metabolism in mammary epithelial cells.
PLoS One. 2022 Oct 12;17(10):e0275725. doi: 10.1371/journal.pone.0275725. eCollection 2022.
6
Myoglobin expression by alternative transcript in different mesenchymal stem cells compartments.
Stem Cell Res Ther. 2022 May 21;13(1):209. doi: 10.1186/s13287-022-02880-6.
7
On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice.
Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E47-E62. doi: 10.1152/ajpendo.00662.2020. Epub 2021 May 10.
8
Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.
Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E63-E79. doi: 10.1152/ajpendo.00624.2020. Epub 2021 May 10.
9
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport.
Redox Biol. 2020 Oct;37:101687. doi: 10.1016/j.redox.2020.101687. Epub 2020 Aug 14.
10
Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers.
PLoS One. 2018 Sep 19;13(9):e0201401. doi: 10.1371/journal.pone.0201401. eCollection 2018.

本文引用的文献

1
Myoglobin's old and new clothes: from molecular structure to function in living cells.
J Exp Biol. 2010 Aug 15;213(Pt 16):2713-25. doi: 10.1242/jeb.043075.
2
The solubilities of the normal saturated fatty acids.
J Org Chem. 1946 Sep;11(5):603-9. doi: 10.1021/jo01175a025.
3
Blood flow and metabolic regulation in seal muscle during apnea.
J Exp Biol. 2008 Oct;211(Pt 20):3323-32. doi: 10.1242/jeb.018887.
4
Interaction of fatty acid with myoglobin.
FEBS Lett. 2008 Oct 29;582(25-26):3643-9. doi: 10.1016/j.febslet.2008.09.047. Epub 2008 Oct 7.
5
Determination of myoglobin concentration in blood-perfused tissue.
Eur J Appl Physiol. 2008 Sep;104(1):41-8. doi: 10.1007/s00421-008-0775-x. Epub 2008 May 31.
6
Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function.
Circ Res. 2007 Jun 22;100(12):1749-54. doi: 10.1161/CIRCRESAHA.107.152488. Epub 2007 May 10.
7
Disordered lipid metabolism and the pathogenesis of insulin resistance.
Physiol Rev. 2007 Apr;87(2):507-20. doi: 10.1152/physrev.00024.2006.
9
Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport.
J Physiol. 2007 Jan 15;578(Pt 2):595-603. doi: 10.1113/jphysiol.2006.116061. Epub 2006 Oct 12.
10
Investigation of bioactive NO-scavenging role of myoglobin in myocardium.
Pflugers Arch. 2006 Apr;452(1):36-42. doi: 10.1007/s00424-005-0011-z. Epub 2006 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验