Chevry L, Sampathkumar N K, Cebers A, Berret J-F
Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France.
Department of Theoretical Physics, University of Latvia, Zellu 8, Riga LV-1002, Latvia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062306. doi: 10.1103/PhysRevE.88.062306. Epub 2013 Dec 13.
We propose a simple microrheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are determined.
我们提出了一种简单的微观流变学技术来评估复杂流体的粘弹性特性。该方法基于使用长度为几微米的磁线,并使其处于旋转磁场中。在这项工作中,该方法应用于一种表现为理想麦克斯韦流体的表面活性剂蠕虫状胶束溶液。随着频率增加,磁线会在稳定旋转状态和受阻旋转状态之间发生转变。研究表明,平均旋转速度和振荡幅度遵循具有明确指数的标度律。通过比较模型预测结果与实验结果,确定了流体的流变参数。