Praveen Kumar A Ananth, Usha R, Banerjee Tamal, Bandyopadhyay Dipankar
Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
Department of Mathematics, Indian Institute of Technology, Chennai, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063012. doi: 10.1103/PhysRevE.88.063012. Epub 2013 Dec 13.
The instabilities of a free bilayer flowing on an inclined Darcy-Brinkman porous layer have been explored. The bilayer is composed of a pair of immiscible liquid films with a deformable liquid-liquid interface and a liquid-air free surface. An Orr-Sommerfeld analysis of the governing equations and boundary conditions uncovers that this configuration can be unstable by a pair of long-wave interfacial modes at the free surface and at the interface together with a couple of finite wave-number shear modes originating from the inertial influences at the liquid layers. In particular, one of the shear modes originates beyond a threshold flow rate owing to the slippage at the porous-liquid interface and is found to be the dominant one even when the porous medium is moderately thin, porous, and permeable. The strength of the porous media mediated mode (a) grows with increase in porosity, (b) grows and then remains invariant with increase in thickness, and (c) initially grows and then decays with increase in the permeability of the porous layer. Further, the presence of a lower layer with smaller viscosity and a thicker upper layer is found to facilitate the growth of this newly identified porous media mode. Importantly, beyond a threshold upper to lower thickness and viscosity ratios and the angle of inclination the porous media mode dominates over all the other interfacial or shear modes, highlighting its importance in the bilayer flows down an inclined porous medium. The study showcases the importance of a porous layer in destabilizing a free bilayer flow down an inclined plane, which can be of importance to improve mixing, emulsification, and heat and mass transfer characteristics in the microscale devices.
研究了在倾斜的达西 - 布林克曼多孔层上流动的自由双层的不稳定性。该双层由一对具有可变形液 - 液界面和液 - 气自由表面的不混溶液膜组成。对控制方程和边界条件进行的奥尔 - 索末菲分析表明,这种结构可能会因自由表面和界面处的一对长波界面模式以及源于液层惯性影响的几个有限波数剪切模式而变得不稳定。特别地,其中一种剪切模式由于多孔 - 液体界面处的滑移而在超过阈值流速时出现,并且即使多孔介质适度薄、多孔且可渗透,该模式也被发现是主导模式。多孔介质介导模式的强度:(a) 随孔隙率增加而增加,(b) 随厚度增加先增加然后保持不变,(c) 随多孔层渗透率增加先增加然后衰减。此外,发现存在较低粘度的下层和较厚的上层有助于这种新识别的多孔介质模式的增长。重要的是,超过阈值的上下层厚度和粘度比以及倾斜角度后,多孔介质模式在所有其他界面或剪切模式中占主导地位,突出了其在沿倾斜多孔介质向下流动的双层流中的重要性。该研究展示了多孔层在使沿倾斜平面向下流动的自由双层流失稳方面的重要性,这对于改善微尺度装置中的混合、乳化以及传热和传质特性可能具有重要意义。