Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
Phys Rev Lett. 2013 Dec 13;111(24):246402. doi: 10.1103/PhysRevLett.111.246402. Epub 2013 Dec 12.
Using ab initio methods for correlated electrons in solids, we investigate the metal-insulator transition across the Ruddlesden-Popper (RP) series of iridates and explore the robustness of the Jeff=1/2 state against band effects due to itineracy, tetragonal distortion, octahedral rotation, and Coulomb interaction. We predict the effects of epitaxial strain on the optical conductivity, magnetic moments, and Jeff=1/2 ground-state wave functions in the RP series. To describe the solution of the many-body problem in an intuitive picture, we introduce a concept of energy-dependent atomic states, which strongly resemble the atomic Jeff=1/2 states but with coefficients that are energy or time dependent. We demonstrate that the deviation from the ideal Jeff=1/2 state is negligible at short time scales for both single- and double-layer iridates, while it becomes quite significant for Sr3Ir2O7 at long times and low energy. Interestingly, Sr2IrO4 is positioned very close to the SU(2) limit, with only ∼3% deviation from the ideal Jeff=1/2 situation.
我们使用基于电子关联的从头计算方法,研究了 Ruddlesden-Popper(RP)系列铱氧化物中的金属-绝缘体转变,并探讨了 Jeff=1/2 态对巡游、四方畸变、八面体旋转和库仑相互作用引起的能带效应的稳健性。我们预测了外延应变对 RP 系列中光学电导率、磁矩和 Jeff=1/2 基态波函数的影响。为了直观地描述多体问题的解,我们引入了一个能量依赖的原子态的概念,它与原子 Jeff=1/2 态非常相似,但系数随能量或时间变化。我们证明,对于单层和双层铱氧化物,在短时间尺度上,偏离理想 Jeff=1/2 态的程度可以忽略不计,而对于 Sr3Ir2O7,在长时间和低能量下,这种偏离变得非常显著。有趣的是,Sr2IrO4 非常接近 SU(2)极限,仅偏离理想 Jeff=1/2 情况约 3%。