Shang Xiaohong, Wan Ning, Han Deming, Zhang Gang
College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China.
Photochem Photobiol Sci. 2014 Mar;13(3):574-82. doi: 10.1039/c3pp50394a. Epub 2014 Jan 31.
We have reported a theoretical analysis of a series of heteroleptic iridium(III) complexes (mpmi)2Ir(fppi) [mpmi = 1-(4-tolyl)-3-methyl-imidazole, fppi = 4-fluoro-2-(pyrrol-2-yl)-pyridine] (1a), (mpmi)2Ir(dfpi) [dfpi = 4-fluoro-2-(3-fluoro-pyrrol-2-yl)-pyridine] (1b), (mpmi)2Ir(tfpi) [tfpi = 2-(pyrrol-2-yl)-4-trifluoromethyl-pyridine] (1c), (mpmi)2Ir(priq) [priq = 1-(pyrrol-2-yl)isoquinoline] (2a), (mpmi)2Ir(isql) [isql = 1-(indol-2-yl)-isoquinoline] (2b), and (mpmi)2Ir(biql) [biql = 1-(benzoimidazol-2-yl)-isoquinoline] (2c) by using the density functional theory (DFT) method to investigate their electronic structures, photophysical properties, and the phosphorescent efficiency mechanism. The results reveal that the nature of the ancillary ligands can affect the electron density distributions and energies of frontier molecular orbitals, resulting in changes of charge transfer performances and emission color. It is found that the studied complex 1c with the -CF3 substituent at the pyridine moiety results in the lower HOMO-LUMO energy gap and LUMO energy level, which will lead to a rich electron injection ability compared with that of 1a. For each complex studied (except 2b), the hole-transporting performance is better than the electron-transporting performance. In addition, for complexes 2a and 2b, the differences between reorganization energies for hole transport (λ(ih)) and reorganization energies for electron transport (λ(ie)) are relatively smaller, indicating that the hole and electron transfer balance could be achieved more easily in the emitting layer. It is believed that the largest metal to ligand charge transfer (MLCT) character, the higher μ(S1) and E(T1) values, as well as the smallest ΔE(S1-T1) value could result in higher phosphorescent quantum efficiency for 1b than those of other complexes.
我们已经报道了一系列异金属铱(III)配合物(mpmi)2Ir(fppi)[mpmi = 1 - (4 - 甲苯基) - 3 - 甲基咪唑,fppi = 4 - 氟 - 2 - (吡咯 - 2 - 基)吡啶](1a)、(mpmi)2Ir(dfpi)[dfpi = 4 - 氟 - 2 - (3 - 氟 - 吡咯 - 2 - 基)吡啶](1b)、(mpmi)2Ir(tfpi)[tfpi = 2 - (吡咯 - 2 - 基) - 4 - 三氟甲基吡啶](1c)、(mpmi)2Ir(priq)[priq = 1 - (吡咯 - 2 - 基)异喹啉](2a)、(mpmi)2Ir(isql)[isql = 1 - (吲哚 - 2 - 基)异喹啉](2b)和(mpmi)2Ir(biql)[biql = 1 - (苯并咪唑 - 2 - 基)异喹啉](2c)的理论分析,采用密度泛函理论(DFT)方法研究它们的电子结构、光物理性质和磷光效率机制。结果表明,辅助配体的性质会影响前线分子轨道的电子密度分布和能量,从而导致电荷转移性能和发射颜色的变化。研究发现,吡啶部分带有 -CF3取代基的配合物1c导致较低的HOMO - LUMO能隙和LUMO能级,与1a相比,这将导致更强的电子注入能力。对于所研究的每个配合物(2b除外),空穴传输性能优于电子传输性能。此外,对于配合物2a和2b,空穴传输的重组能(λ(ih))和电子传输的重组能(λ(ie))之间的差异相对较小,表明在发射层中更容易实现空穴和电子转移平衡。据信,最大的金属到配体电荷转移(MLCT)特征、较高的μ(S1)和E(T1)值以及最小的ΔE(S1 - T1)值会使1b的磷光量子效率高于其他配合物。