Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany.
Institute of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany.
PLoS One. 2014 Jan 29;9(1):e87485. doi: 10.1371/journal.pone.0087485. eCollection 2014.
Rpb5 is a general subunit of all eukaryotic RNA polymerases which consists of a N-terminal and a C-terminal domain. The corresponding archaeal subunit RpoH contains only the conserved C-terminal domain without any N-terminal extensions. A chimeric construct, termed rp5H, which encodes the N-terminal yeast domain and the C-terminal domain from Pyrococcus furiosus is unable to complement the lethal phenotype of a yeast rpb5 deletion strain (Δrpb5). By applying a random mutagenesis approach we found that the amino acid exchange E197K in the C-terminal domain of the chimeric Rp5H, either alone or with additional exchanges in the N-terminal domain, leads to heterospecific complementation of the growth deficiency of Δrpb5. Moreover, using a recently described genetic system for Pyrococcus we could demonstrate that the corresponding exchange E62K in the archaeal RpoH subunit alone without the eukaryotic N-terminal extension was stable, and growth experiments indicated no obvious impairment in vivo. In vitro transcription experiments with purified RNA polymerases showed an identical activity of the wild type and the mutant Pyrococcus RNA polymerase. A multiple alignment of RpoH sequences demonstrated that E62 is present in only a few archaeal species, whereas the great majority of sequences within archaea and eukarya contain a positively charged amino acid at this position. The crystal structures of the Sulfolobus and yeast RNA polymerases show that the positively charged arginine residues in subunits RpoH and Rpb5 most likely form salt bridges with negatively charged residues from subunit RpoK and Rpb1, respectively. A similar salt bridge might stabilize the interaction of Rp5H-E197K with a neighboring subunit of yeast RNA polymerase and thus lead to complementation of Δrpb5.
Rpb5 是所有真核 RNA 聚合酶的通用亚基,由一个 N 端和一个 C 端结构域组成。相应的古菌亚基 RpoH 仅包含保守的 C 端结构域,没有任何 N 端延伸。一种嵌合构建体,称为 rp5H,编码来自 Pyrococcus furiosus 的酵母 N 端结构域和 C 端结构域,无法补充酵母 rpb5 缺失菌株(Δrpb5)的致死表型。通过应用随机诱变方法,我们发现嵌合 Rp5H 的 C 端结构域中的氨基酸替换 E197K,无论是单独存在还是与 N 端结构域中的其他替换一起,都会导致异源特异性对Δrpb5 的生长缺陷进行互补。此外,使用最近描述的 Pyrococcus 遗传系统,我们可以证明在没有真核 N 端延伸的情况下,古菌 RpoH 亚基中的相应交换 E62K 是稳定的,并且体内生长实验表明没有明显的损伤。用纯化的 RNA 聚合酶进行的体外转录实验表明,野生型和突变型 Pyrococcus RNA 聚合酶的活性相同。RpoH 序列的多重比对表明,E62 仅存在于少数古菌物种中,而在古菌和真核生物中,大多数序列在该位置都含有带正电荷的氨基酸。Sulfolobus 和酵母 RNA 聚合酶的晶体结构表明,亚基 RpoH 和 Rpb5 中的带正电荷的精氨酸残基很可能与亚基 RpoK 和 Rpb1 中的带负电荷的残基形成盐桥。类似的盐桥可能稳定 Rp5H-E197K 与酵母 RNA 聚合酶相邻亚基的相互作用,从而导致对Δrpb5 的互补。