Suppr超能文献

高锰酸盐改善低渗透带中非水相 TCE 的处理。

Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

机构信息

Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531, USA; School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915, USA.

出版信息

J Hazard Mater. 2014 Mar 15;268:177-84. doi: 10.1016/j.jhazmat.2014.01.007. Epub 2014 Jan 9.

Abstract

Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones.

摘要

处理嵌入低渗透性区域(LPZ)的密集非水相液体(DNAPL)是基于注射的补救处理的一个特别具有挑战性的问题。我们的目标是提高高锰酸盐(MnO4(-))进入 LPZ 的扫效率,以处理高浓度的 TCE。这是通过进行传输实验来实现的,这些实验量化了各种高锰酸盐注入溶液进入 LPZ 的穿透情况,该 LPZ 中加入了非水相(14)C-TCE。我们评估的处理方法包括高锰酸盐与以下物质配对:(i)剪切稀化聚合物(黄原胶);(ii)最小化 MnO2 外皮形成的稳定助剂;(iii)相转移催化剂。此外,我们通过开发小型 LPZ 圆柱来量化这些注入溶液在批量条件下提高 TCE 破坏的能力,这些圆柱中加入了(14)C-TCE。传输实验表明,MnO4(-) 单独用于穿透 LPZ 并与非水相 TCE 反应效率低下,因为明显且大的 MnO2 外皮抑制了 TCE 与进一步氧化剂的接触。通过将黄原胶与 MnO4(-) 一起使用,扫效率提高了(90%),但外皮形成仍然明显。通过将稳定剂,六偏磷酸钠(SHMP)与黄原胶一起使用,高锰酸盐可以穿透 100%的 LPZ,没有观察到外皮,TCE 的氧化百分比增加。使用 LPZ 圆柱进行的批量实验允许注入溶液和 DNAPL 之间有更长的接触时间,结果表明,与单独使用 MnO4(-)相比,SHMP+MnO4(-)可以将 TCE 的破坏提高约 16%(56.5%比 40.1%)。这些结果支持将高锰酸盐与 SHMP 或 SHMP 和黄原胶结合使用,作为处理低渗透性区域中高浓度 TCE 的一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验