Cognet Laurent, Lounis Brahim, Choquet Daniel
Cold Spring Harb Protoc. 2014 Feb 1;2014(2):207-13. doi: 10.1101/pdb.prot080416.
The plasma membrane is a fluid-mosaic structure in which some molecules seem to be randomly distributed and others show a precise compartmentalization that is related to their functional properties. These membrane domains are submicrometer in size and therefore are close to or below the optical diffraction limit. This makes their study difficult by conventional microscopy. Moreover, these compartments are usually dynamic in size and composition as their component molecules can continuously enter and exit by diffusion. Real-time, high-resolution, live-imaging methods rather than static imaging are thus required to reflect the real behavior of membrane molecules. Single-molecule techniques fulfill these requirements, as they provide information about the dynamics of molecules, together with nanometer resolution to study their distribution. Here we describe imaging and tracking techniques using nanometer-sized optical labels for the study of the movement of individual or small assemblies of membrane proteins. These labels include fluorescent dyes, luminescent nanocrystals, and absorbing metallic nanoparticles. Single-molecule tracking (SMT), with the use of organic dyes and semiconductor quantum dots (QDs), and single-particle tracking (SPT), with the use of gold nanoparticles, allow one to study the diffusion of individual molecules, their compartmentalization, and their interactions with other molecules. This protocol describes three methods for imaging and tracking membrane proteins: SMT using an organic dye, quantum dot tracking (QDT), and single-nanoparticle photothermal tracking (SNaPT) using gold nanoparticles. Organic dyes and QDs are tracked by single-molecule epifluorescence microscopy. Gold nanoparticles are detected by photothermal heterodyne imaging (PHI) and tracked using a triangulation scheme.
质膜是一种流体镶嵌结构,其中一些分子似乎随机分布,而另一些分子则呈现出与它们的功能特性相关的精确分区。这些膜结构域的尺寸在亚微米级别,因此接近或低于光学衍射极限。这使得用传统显微镜研究它们变得困难。此外,这些分区的大小和组成通常是动态的,因为它们的组成分子可以通过扩散不断进出。因此,需要实时、高分辨率的活细胞成像方法而非静态成像来反映膜分子的真实行为。单分子技术满足了这些要求,因为它们提供了分子动力学信息以及纳米级分辨率来研究其分布。在这里,我们描述了使用纳米级光学标记来研究单个或小的膜蛋白组装体运动的成像和跟踪技术。这些标记包括荧光染料、发光纳米晶体和吸收性金属纳米颗粒。使用有机染料和半导体量子点(QDs)的单分子跟踪(SMT)以及使用金纳米颗粒的单粒子跟踪(SPT),能够研究单个分子的扩散、它们的分区以及它们与其他分子的相互作用。本方案描述了三种用于成像和跟踪膜蛋白的方法:使用有机染料的SMT、量子点跟踪(QDT)以及使用金纳米颗粒的单纳米颗粒光热跟踪(SNaPT)。有机染料和量子点通过单分子落射荧光显微镜进行跟踪。金纳米颗粒通过光热外差成像(PHI)进行检测,并使用三角测量方案进行跟踪。