Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322.
Toxicol Sci. 2014 May;139(1):59-73. doi: 10.1093/toxsci/kfu018. Epub 2014 Feb 4.
Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms.
镉 (Cd) 暴露会导致影响肝脏、肾脏、肺部和其他器官系统的人类疾病,但这些毒性的多效性的潜在机制尚未得到充分理解。镉会通过饮食、环境(包括香烟烟雾)和职业来源在人体中积累,其生物半衰期为二十年。我们之前的小鼠和细胞研究表明,环境低剂量镉暴露会改变蛋白质的氧化还原状态,从而刺激炎症信号和破坏肌动蛋白细胞骨架系统,表明镉可能影响多种疾病机制。在当前的研究中,我们研究了急性镉暴露对小鼠肝线粒体的氧化还原蛋白质组和代谢组的影响,以深入了解相关的毒理学机制和功能。我们通过使用同位素编码亲和标签 (ICAT) 结合质谱的氧化还原蛋白质组学分析来研究肝线粒体蛋白质的氧化还原状态。氧化还原 ICAT 鉴定了 2687 个含有半胱氨酸的肽(肽基 Cys),其中 1667 个肽基 Cys(547 个蛋白质)在对照和 Cd 暴露样品中均被检测到。其中,46%(1247 个肽基 Cys,547 个蛋白质)相对于对照被 Cd 氧化超过 1.5 倍。使用 MetaCore 软件进行的生物信息学分析表明,Cd 影响了 86 条途径,包括在支链氨基酸 (BCAA) 中发挥作用的蛋白质中的 24 个半胱氨酸和在脂肪酸(酰基辅酶 A/肉碱)代谢中发挥作用的蛋白质中的 14 个半胱氨酸。一致地,高分辨率代谢组学数据表明,Cd 处理改变了 BCAA 和肉碱代谢物的水平。综上所述,这些结果表明,线粒体蛋白质的氧化还原和代谢物是 Cd 诱导肝毒性的靶标。这些结果进一步表明,氧化还原蛋白质组学和代谢组学可以在综合系统方法中用于研究复杂的疾病机制。
Am J Physiol Lung Cell Mol Physiol. 2013-9-27
Free Radic Biol Med. 2018-12-6
Mol Cell Proteomics. 2013-8-14
J Proteome Res. 2013-10-8
Trans Am Clin Climatol Assoc. 2024
Free Radic Biol Med. 2024-5-1
Biotechnol Biofuels Bioprod. 2023-11-20
Am J Epidemiol. 2023-10-10
Antioxidants (Basel). 2023-3-25
Adv Redox Res. 2023-4
J Am Soc Mass Spectrom. 1994-11
Am J Physiol Lung Cell Mol Physiol. 2013-9-27
Mol Cell Proteomics. 2013-8-14
J Biol Chem. 2013-7-16
Crit Rev Biochem Mol Biol. 2013-1-29
Toxicol Sci. 2012-9-7
J Proteomics Bioinform. 2011-10-30
PLoS One. 2012-3-6