Suman S P, Rentfrow G, Nair M N, Joseph P
Department of Animal and Food Sciences, University of Kentucky, Lexington 40546.
J Anim Sci. 2014 Mar;92(3):875-82. doi: 10.2527/jas.2013-7277. Epub 2014 Feb 4.
Meat color is the most important quality trait influencing consumer purchase decisions. The interinfluential interactions between myoglobin and biomolecules govern color stability in meat. The advances in proteomics, such as high throughput analytical tools in mass spectrometry, 2-dimensional electrophoresis, and bioinformatics, offer themselves as robust techniques to characterize the proteome basis of muscle- and species-specific meat color phenomena. Differential abundance of chaperones and antioxidant proteins contributes to muscle-specific color stability in beef; the greater abundance of chaperones and antioxidant proteins in color-stable Longissimus lumborum than in color-labile Psoas major protects myoglobin and contributes to superior color stability of beef Longissimus steaks. Lipid oxidation-induced myoglobin oxidation is more critical to beef color than pork color due to the inherent differences in myoglobin chemistry; the number of nucleophilic histidine residues adducted by reactive aldehydes is greater in beef myoglobin than in pork myoglobin. Preferential adduction of secondary products of lipid oxidation to beef myoglobin accelerates metmyoglobin formation at a greater degree than in its pork counterpart. Mass spectrometric investigations revealed that although cherry-red carboxymyoglobin is more stable than oxymyoglobin, both redox forms undergo lipid oxidation-induced oxidation in model systems. The accuracy of mass spectrometry to detect the molecular mass of proteins has been applied to differentiate myoglobins from closely related meat animals, such as goats and sheep or emu and ostrich. In addition, this approach indicated that turkey myoglobin is 350 Da greater in molecular mass than beef myoglobin, and the unique biochemistry of turkey myoglobin could be responsible for its greater thermostability in model systems as well as the pink color defect observed in fully cooked uncured turkey products.
肉色是影响消费者购买决策的最重要的品质特征。肌红蛋白与生物分子之间的相互作用决定了肉的颜色稳定性。蛋白质组学的进展,如质谱中的高通量分析工具、二维电泳和生物信息学,为表征肌肉和物种特异性肉色现象的蛋白质组基础提供了强大的技术手段。伴侣蛋白和抗氧化蛋白的丰度差异有助于牛肉肌肉特异性的颜色稳定性;颜色稳定的腰大肌中伴侣蛋白和抗氧化蛋白的丰度高于颜色不稳定的腰小肌,这保护了肌红蛋白,有助于牛肉里脊牛排具有更好的颜色稳定性。由于肌红蛋白化学性质的固有差异,脂质氧化诱导的肌红蛋白氧化对牛肉颜色的影响比对猪肉颜色的影响更为关键;牛肉肌红蛋白中被反应性醛加成的亲核组氨酸残基数量比猪肉肌红蛋白中的多。脂质氧化副产物优先加成到牛肉肌红蛋白上,比加成到猪肉肌红蛋白上更能加速高铁肌红蛋白的形成。质谱研究表明,虽然樱桃红色的羧基肌红蛋白比氧合肌红蛋白更稳定,但在模型系统中,这两种氧化还原形式都会发生脂质氧化诱导的氧化。质谱检测蛋白质分子量的准确性已被用于区分亲缘关系密切的肉类动物的肌红蛋白,如山羊和绵羊或鸸鹋和鸵鸟。此外,这种方法表明,火鸡肌红蛋白的分子量比牛肉肌红蛋白大350 Da,火鸡肌红蛋白独特的生物化学性质可能是其在模型系统中具有更高热稳定性以及在完全煮熟的未腌制火鸡产品中观察到粉红色缺陷的原因。