Hardin C C, Horowitz J
Department of Biochemistry and Biophysics, Iowa State University, Ames 50011.
J Mol Biol. 1987 Oct 5;197(3):555-69. doi: 10.1016/0022-2836(87)90564-x.
19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).
测定了5-氟尿嘧啶取代的大肠杆菌tRNA(Val)1的19F核磁共振(n.m.r.)弛豫参数,并根据几种分子运动模型来表征单个5-氟尿苷(FUrd)残基的内部流动性。测定的弛豫参数包括282 MHz下的自旋晶格(T1)弛豫时间、282 MHz下的19F(1H) NOE以及根据338 MHz、282 MHz和84 MHz下的线宽数据估算的自旋-自旋(T2)弛豫时间。根据T2的场依赖性确定了19F弛豫参数的偶极和化学位移各向异性贡献。结果表明,在282和338 MHz下,化学位移各向异性对19F线宽有很大贡献。对化学位移各向异性弛豫数据的分析表明,相对于大分子的整体翻滚,19F标记的tRNA(Val)1中FUrd残基的糖苷键周围发生的扭转运动可忽略不计,这与分子中所有氟尿嘧啶残基处的碱基-碱基氢键和/或堆积相互作用的维持情况一致。通过使用“两态跳跃”和“圆锥体内扩散”形式来分析偶极弛豫数据。运动幅度(θ)被解释为由于氟化核苷核糖环内的假旋转波动所致。假设相关时间(τi,2)为1.6 ns,这些幅度范围约为30度至60度。通过使用5-氟尿嘧啶取代的tRNA(Val)1中14个FUrd残基的现有19F n.m.r.归属数据,这些运动幅度可直接与残基的环境区域相关联。位于三级和螺旋结构域的残基显示出的运动(θ约等于30至35度)明显少于位于环中的残基(θ约等于45至60度)。还证明了残基流动性与溶剂暴露之间的相关性。特定残基的内部运动幅度与从酵母tRNA(Phe)的X射线衍射和分子动力学数据得出的幅度相当吻合。