Suppr超能文献

基于拷贝数改变的非小细胞肺癌分类

Classification of non-small cell lung cancer based on copy number alterations.

作者信息

Li Bi-Qing, You Jin, Huang Tao, Cai Yu-Dong

机构信息

Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.

The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.

出版信息

PLoS One. 2014 Feb 5;9(2):e88300. doi: 10.1371/journal.pone.0088300. eCollection 2014.

Abstract

Lung cancer is one of the leading causes of cancer mortality worldwide and non-small cell lung cancer (NSCLC) accounts for the most part. NSCLC can be further divided into adenocarcinoma (ACA) and squamous cell carcinoma (SCC). It is of great value to distinguish these two subgroups clinically. In this study, we compared the genome-wide copy number alterations (CNAs) patterns of 208 early stage ACA and 93 early stage SCC tumor samples. As a result, 266 CNA probes stood out for better discrimination of ACA and SCC. It was revealed that the genes corresponding to these 266 probes were enriched in lung cancer related pathways and enriched in the chromosome regions where CNA usually occur in lung cancer. This study sheds lights on the CNA study of NSCLC and provides some insights on the epigenetic of NSCLC.

摘要

肺癌是全球癌症死亡的主要原因之一,其中非小细胞肺癌(NSCLC)占大部分。NSCLC可进一步分为腺癌(ACA)和鳞状细胞癌(SCC)。在临床上区分这两个亚组具有重要价值。在本研究中,我们比较了208例早期ACA和93例早期SCC肿瘤样本的全基因组拷贝数改变(CNA)模式。结果,266个CNA探针在区分ACA和SCC方面表现突出。研究发现,与这266个探针对应的基因在肺癌相关通路中富集,且在肺癌中通常发生CNA的染色体区域富集。本研究为NSCLC的CNA研究提供了线索,并为NSCLC的表观遗传学提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/522a/3914971/ba87b7b46b3d/pone.0088300.g001.jpg

相似文献

1
Classification of non-small cell lung cancer based on copy number alterations.
PLoS One. 2014 Feb 5;9(2):e88300. doi: 10.1371/journal.pone.0088300. eCollection 2014.
3
Genomic copy number alterations associated with the early brain metastasis of non-small cell lung cancer.
Int J Oncol. 2012 Dec;41(6):2013-20. doi: 10.3892/ijo.2012.1663. Epub 2012 Oct 15.
4
Common and contrasting genomic profiles among the major human lung cancer subtypes.
Cold Spring Harb Symp Quant Biol. 2005;70:11-24. doi: 10.1101/sqb.2005.70.021.
7
Landscape of somatic allelic imbalances and copy number alterations in human lung carcinoma.
Int J Cancer. 2013 May 1;132(9):2020-31. doi: 10.1002/ijc.27879. Epub 2012 Oct 20.
8
Lung Adenocarcinoma and Squamous Cell Carcinoma Gene Expression Subtypes Demonstrate Significant Differences in Tumor Immune Landscape.
J Thorac Oncol. 2017 Jun;12(6):943-953. doi: 10.1016/j.jtho.2017.03.010. Epub 2017 Mar 21.
9
ROS1 copy number alterations are frequent in non-small cell lung cancer.
Oncotarget. 2016 Feb 16;7(7):8019-28. doi: 10.18632/oncotarget.6921.
10

引用本文的文献

4
Down-Regulation of TMPO-AS1 Induces Apoptosis in Lung Carcinoma Cells by Regulating miR-143-3p/CDK1 Axis.
Technol Cancer Res Treat. 2021 Jan-Dec;20:1533033820948880. doi: 10.1177/1533033820948880.
6
Identification and Analysis of the Blood lncRNA Signature for Liver Cirrhosis and Hepatocellular Carcinoma.
Front Genet. 2020 Dec 7;11:595699. doi: 10.3389/fgene.2020.595699. eCollection 2020.
7
The Methylation Pattern for Knee and Hip Osteoarthritis.
Front Cell Dev Biol. 2020 Nov 6;8:602024. doi: 10.3389/fcell.2020.602024. eCollection 2020.
8
Development of a risk scoring system for evaluating the prognosis of patients with Her2-positive breast cancer.
Cancer Cell Int. 2020 Apr 15;20:121. doi: 10.1186/s12935-020-01175-1. eCollection 2020.
10
Identification and Analysis of Glioblastoma Biomarkers Based on Single Cell Sequencing.
Front Bioeng Biotechnol. 2020 Mar 5;8:167. doi: 10.3389/fbioe.2020.00167. eCollection 2020.

本文引用的文献

1
Glypican-5 is a novel metastasis suppressor gene in non-small cell lung cancer.
Cancer Lett. 2013 Dec 1;341(2):265-73. doi: 10.1016/j.canlet.2013.08.020. Epub 2013 Aug 17.
2
Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.
Mol Biosyst. 2013 Jan 27;9(1):61-9. doi: 10.1039/c2mb25327e. Epub 2012 Nov 2.
4
Prediction of protein cleavage site with feature selection by random forest.
PLoS One. 2012;7(9):e45854. doi: 10.1371/journal.pone.0045854. Epub 2012 Sep 18.
5
Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS.
PLoS One. 2012;7(8):e43927. doi: 10.1371/journal.pone.0043927. Epub 2012 Aug 28.
6
Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method.
Mol Biosyst. 2012 Nov;8(11):2946-55. doi: 10.1039/c2mb25185j. Epub 2012 Aug 23.
8
The newcomer in the integrin family: integrin α9 in biology and cancer.
Adv Biol Regul. 2012 May;52(2):326-39. doi: 10.1016/j.jbior.2012.03.004. Epub 2012 Mar 30.
9
Prediction of protein domain with mRMR feature selection and analysis.
PLoS One. 2012;7(6):e39308. doi: 10.1371/journal.pone.0039308. Epub 2012 Jun 15.
10
Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network.
PLoS One. 2012;7(4):e33393. doi: 10.1371/journal.pone.0033393. Epub 2012 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验