Suppr超能文献

用于医学的肽两亲分子超分子纳米纤维

Supramolecular Nanofibers of Peptide Amphiphiles for Medicine.

作者信息

Webber Matthew J, Berns Eric J, Stupp Samuel I

机构信息

Northwestern University Department of Biomedical Engineering, Evanston, Illinois, 60208 USA ; Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA.

Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA ; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208 USA ; Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 USA ; Department of Medicine, Northwestern University, Chicago, Illinois, 60611 USA.

出版信息

Isr J Chem. 2013 Aug 1;53(8):530-554. doi: 10.1002/ijch.201300046.

Abstract

Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems.

摘要

肽纳米结构是一类令人兴奋的超分子系统,可设计用于新型疗法,在先进医学中具有巨大潜力。本文综述了基于肽两亲分子的纳米结构的研究进展,这些肽两亲分子能够形成一维组装体,其结构类似于细胞外基质中的纳米纤维。利用超分子化学,这些系统具有高度的可调性,并且可以设计成用生物活性肽直接向细胞发出信号。肽两亲分子纳米纤维还可用于通过共组装实现功能复用,并设计用于递送蛋白质、核酸、药物或细胞。在此,我们阐述这些系统的功能,描述它们在骨、软骨、神经系统、心血管系统和其他组织的再生医学中的应用。此外,我们强调了最近关于使用肽两亲分子组装体来创建超越纳米尺度有序的分层仿生结构的工作,并讨论了这些超分子系统的未来前景。

相似文献

1
Supramolecular Nanofibers of Peptide Amphiphiles for Medicine.
Isr J Chem. 2013 Aug 1;53(8):530-554. doi: 10.1002/ijch.201300046.
2
Emerging peptide nanomedicine to regenerate tissues and organs.
J Intern Med. 2010 Jan;267(1):71-88. doi: 10.1111/j.1365-2796.2009.02184.x.
3
Supramolecular Assembly of Peptide Amphiphiles.
Acc Chem Res. 2017 Oct 17;50(10):2440-2448. doi: 10.1021/acs.accounts.7b00297. Epub 2017 Sep 6.
4
Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
Acta Biomater. 2021 Nov;135:87-99. doi: 10.1016/j.actbio.2021.08.044. Epub 2021 Sep 2.
5
Transforming Growth Factor β-1 Binding by Peptide Amphiphile Hydrogels.
ACS Biomater Sci Eng. 2020 Aug 10;6(8):4551-4560. doi: 10.1021/acsbiomaterials.0c00679. Epub 2020 Jul 8.
6
Designed peptide amphiphiles as scaffolds for tissue engineering.
Adv Colloid Interface Sci. 2023 Apr;314:102866. doi: 10.1016/j.cis.2023.102866. Epub 2023 Feb 27.
8
Single-cell coating with biomimetic extracellular nanofiber matrices.
Acta Biomater. 2024 Mar 15;177:50-61. doi: 10.1016/j.actbio.2024.02.002. Epub 2024 Feb 6.
9
Gd(III)-labeled peptide nanofibers for reporting on biomaterial localization in vivo.
ACS Nano. 2014 Jul 22;8(7):7325-32. doi: 10.1021/nn502393u. Epub 2014 Jun 25.
10
Boosting chondrocyte bioactivity with ultra-sulfated glycopeptide supramolecular polymers.
Acta Biomater. 2024 Nov;189:103-115. doi: 10.1016/j.actbio.2024.09.047. Epub 2024 Oct 1.

引用本文的文献

1
Evaluation of cylindrical micelles assembled from amphiphilic β-peptides as antigen delivery nanostructures.
Nanoscale Adv. 2025 Mar 20;7(10):2979-2987. doi: 10.1039/d5na00166h. eCollection 2025 May 13.
2
Self-Assembly of Toll-Like Receptor (TLR2/6) Agonist Lipidated Amino Acid or Peptide Conjugates: Distinct Morphologies and Bioactivities.
Bioconjug Chem. 2025 Apr 16;36(4):792-802. doi: 10.1021/acs.bioconjchem.5c00051. Epub 2025 Apr 2.
3
Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences.
ACS Appl Mater Interfaces. 2024 Dec 18;16(50):68713-68723. doi: 10.1021/acsami.4c18165. Epub 2024 Dec 9.
4
Tuning Structural Organization via Molecular Design and Hierarchical Assembly to Develop Supramolecular Thermoresponsive Hydrogels.
Macromolecules. 2024 Jul 3;57(14):6606-6615. doi: 10.1021/acs.macromol.4c00567. eCollection 2024 Jul 23.
5
Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry.
Nat Rev Chem. 2023 Oct;7(10):710-731. doi: 10.1038/s41570-023-00532-8. Epub 2023 Sep 19.
6
Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
Acta Biomater. 2022 Mar 1;140:43-75. doi: 10.1016/j.actbio.2021.10.030. Epub 2021 Oct 25.
8
Engineering the drug carrier biointerface to overcome biological barriers to drug delivery.
Adv Drug Deliv Rev. 2020 Dec;167:89-108. doi: 10.1016/j.addr.2020.06.007. Epub 2020 Jun 11.
9
Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks.
Molecules. 2020 Feb 21;25(4):978. doi: 10.3390/molecules25040978.
10
Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds.
Nanomaterials (Basel). 2020 Jan 8;10(1):119. doi: 10.3390/nano10010119.

本文引用的文献

1
The internal structure of self-assembled peptide amphiphiles nanofibers.
Soft Matter. 2007 Mar 20;3(4):454-462. doi: 10.1039/b614426h.
2
Tuning supramolecular mechanics to guide neuron development.
Biomaterials. 2013 Jul;34(20):4749-57. doi: 10.1016/j.biomaterials.2013.03.025. Epub 2013 Apr 2.
4
Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures.
Curr Opin Colloid Interface Sci. 2012 Dec;17(6):350-359. doi: 10.1016/j.cocis.2012.09.004.
5
Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy.
Adv Healthc Mater. 2013 Jan;2(1):126-33. doi: 10.1002/adhm.201200118. Epub 2012 Jul 31.
6
Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes.
Adv Funct Mater. 2012 Jan 25;22(2):369-377. doi: 10.1002/adfm.201101538. Epub 2011 Oct 6.
7
Photodynamic control of bioactivity in a nanofiber matrix.
ACS Nano. 2012 Dec 21;6(12):10776-85. doi: 10.1021/nn304101x. Epub 2012 Nov 15.
8
Tuning nanostructure dimensions with supramolecular twisting.
J Phys Chem B. 2013 Apr 25;117(16):4604-10. doi: 10.1021/jp3087978. Epub 2012 Nov 12.
9
Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels.
Soft Matter. 2012 Apr 7;8(13):3586-3595. doi: 10.1039/C2SM07420F.
10
Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds.
Biomaterials. 2013 Jan;34(2):452-9. doi: 10.1016/j.biomaterials.2012.10.005. Epub 2012 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验