Department of Biology, University of California, 900 University Avenue, Riverside 92507, Riverside, CA, USA.
BMC Evol Biol. 2014 Feb 20;14:31. doi: 10.1186/1471-2148-14-31.
Spider silks are spectacular examples of phenotypic diversity arising from adaptive molecular evolution. An individual spider can produce an array of specialized silks, with the majority of constituent silk proteins encoded by members of the spidroin gene family. Spidroins are dominated by tandem repeats flanked by short, non-repetitive N- and C-terminal coding regions. The remarkable mechanical properties of spider silks have been largely attributed to the repeat sequences. However, the molecular evolutionary processes acting on spidroin terminal and repetitive regions remain unclear due to a paucity of complete gene sequences and sampling of genetic variation among individuals. To better understand spider silk evolution, we characterize a complete aciniform spidroin gene from an Argiope orb-weaving spider and survey aciniform gene fragments from congeneric individuals.
We present the complete aciniform spidroin (AcSp1) gene from the silver garden spider Argiope argentata (Aar_AcSp1), and document multiple AcSp1 loci in individual genomes of A. argentata and the congeneric A. trifasciata and A. aurantia. We find that Aar_AcSp1 repeats have >98% pairwise nucleotide identity. By comparing AcSp1 repeat amino acid sequences between Argiope species and with other genera, we identify regions of conservation over vast amounts of evolutionary time. Through a PCR survey of individual A. argentata, A. trifasciata, and A. aurantia genomes, we ascertain that AcSp1 repeats show limited variation between species whereas terminal regions are more divergent. We also find that average dN/dS across codons in the N-terminal, repetitive, and C-terminal encoding regions indicate purifying selection that is strongest in the N-terminal region.
Using the complete A. argentata AcSp1 gene and spidroin genetic variation between individuals, this study clarifies some of the molecular evolutionary processes underlying the spectacular mechanical attributes of aciniform silk. It is likely that intragenic concerted evolution and functional constraints on A. argentata AcSp1 repeats result in extreme repeat homogeneity. The maintenance of multiple AcSp1 encoding loci in Argiope genomes supports the hypothesis that Argiope spiders require rapid and efficient protein production to support their prolific use of aciniform silk for prey-wrapping and web-decorating. In addition, multiple gene copies may represent the early stages of spidroin diversification.
蜘蛛丝是适应性分子进化产生的表型多样性的绝佳范例。一只蜘蛛可以产生一系列特殊的丝,其中大多数组成丝蛋白由蛛丝蛋白基因家族的成员编码。蛛丝蛋白主要由串联重复序列组成,两端为短的、非重复的 N-和 C-末端编码区。蜘蛛丝的惊人机械性能在很大程度上归因于重复序列。然而,由于缺乏完整的基因序列和个体之间遗传变异的采样,蛛丝蛋白末端和重复区域的分子进化过程仍不清楚。为了更好地了解蜘蛛丝的进化,我们从一种圆形蛛网蜘蛛中鉴定了一个完整的原丝蛋白基因,并调查了同源个体中原丝蛋白基因片段。
我们展示了来自银园蛛(Argiope argentata)的完整原丝蛋白(AcSp1)基因(Aar_AcSp1),并记录了个体基因组中多个 AcSp1 基因座,以及同属的 A. trifasciata 和 A. aurantia。我们发现 Aar_AcSp1 重复序列具有 >98%的成对核苷酸同一性。通过比较 Argiope 物种之间的 AcSp1 重复氨基酸序列和其他属的序列,我们确定了在漫长的进化时间内保守的区域。通过对个体 A. argentata、A. trifasciata 和 A. aurantia 基因组的 PCR 调查,我们确定 AcSp1 重复序列在物种间变化有限,而末端区域则更为多样化。我们还发现,在 N 末端、重复和 C 末端编码区的密码子中,平均 dN/dS 表明纯化选择最强的区域在 N 末端区域。
利用完整的 A. argentata AcSp1 基因和个体之间的蛛丝蛋白遗传变异,本研究阐明了原丝蛋白的机械特性背后的一些分子进化过程。A. argentata AcSp1 重复序列的种内协同进化和功能限制很可能导致极端重复的同源性。Argiope 基因组中多个 AcSp1 编码基因座的存在支持了这样一种假设,即 Argiope 蜘蛛需要快速有效地蛋白质生产来支持它们大量使用原丝蛋白进行猎物包裹和蛛网装饰。此外,多个基因副本可能代表蛛丝蛋白多样化的早期阶段。