Wang Xiluan, Li Chun, Shi Gaoquan
Key Laboratory of Bio-organic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
Phys Chem Chem Phys. 2014 Jun 7;16(21):10142-8. doi: 10.1039/c3cp54058h. Epub 2014 Feb 20.
Platinum (Pt)-based catalysts used in direct methanol fuel cells (DMFCs) usually suffer from low catalytic activity, slow kinetics of methanol oxidation and poor electrochemical stability. This is mainly due to the toxic effect of carbon monoxide and inefficient use of the Pt catalysts. To address these problems, we immobilized Pt nanoparticles with diameters of 4-6 nm onto the three-dimensional (3D) interpenetrating graphene networks (graphene hydrogel or G-Gel) deposited in the micropores of nickel foam (NF). In this Pt/G-Gel/NF composite catalyst, nearly all the Pt nanoparticles are accessible to methanol and can be efficiently used for electrocatalyzation. It showed excellent electrochemical stability and an activity 2.6 times that of a conventional Pt/reduced graphene oxide (Pt/rGO) composite catalyst. Furthermore, the rate of methanol electro-oxidation at the Pt/G-Gel/NF catalyst can be about 27 times that at the Pt/rGO catalyst, making it applicable for fabricating DMFCs with high current and/or power outputs.
直接甲醇燃料电池(DMFC)中使用的铂(Pt)基催化剂通常存在催化活性低、甲醇氧化动力学缓慢和电化学稳定性差等问题。这主要是由于一氧化碳的毒性作用以及Pt催化剂的利用效率低下。为了解决这些问题,我们将直径为4-6纳米的Pt纳米颗粒固定在沉积于泡沫镍(NF)微孔中的三维(3D)互穿石墨烯网络(石墨烯水凝胶或G-Gel)上。在这种Pt/G-Gel/NF复合催化剂中,几乎所有的Pt纳米颗粒都能接触到甲醇,并可有效地用于电催化。它表现出优异的电化学稳定性,活性是传统Pt/还原氧化石墨烯(Pt/rGO)复合催化剂的2.6倍。此外,Pt/G-Gel/NF催化剂上甲醇电氧化的速率约为Pt/rGO催化剂的27倍,使其适用于制造具有高电流和/或功率输出的DMFC。