Department of Chemistry, ‡Department of Biophysics, and §Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States.
J Phys Chem B. 2014 Mar 20;118(11):2904-12. doi: 10.1021/jp4122003. Epub 2014 Mar 6.
Molecular structures such as conformation and orientation are crucial in determining the activity of peptides immobilized to solid supports. In this study, sum frequency generation (SFG) vibrational spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics, length of the poly(ethylene glycol) (PEG) segment in the SAM and location of the cysteine residue in the peptide, were examined using SFG spectroscopy to determine the effect of each on surface immobilization as well as peptide secondary structure and its orientation in the immobilized state. Results have shown that while each length of PEG chain studied promotes chemical immobilization of the target peptide and prevents nonspecific adsorption, CP1 immobilized on long-chain (PEG2k) maleimide SAMs shows random coil structure in water, whereas CP1 demonstrates α-helical structure when immobilized on short-chain (with four ethylene glycol units - (EG4)) maleimide SAMs. Placement of the cysteine residue at the C-terminus promotes the formation of α-helical structure of CP1 with a single orientation when tethered to EG4 maleimide SAM surfaces. In contrast, immobilization via the N-terminal cysteine of CP1 results in a random coil or lying-down helical structure. The bacteria capturing/killing capability was tested, showing that the surface-immobilized CP1 molecules via C- and N- terminal cysteine exhibit only slight difference, even though they have different secondary structures and orientations.
分子结构,如构象和取向,对于确定固定在固体支持物上的肽的活性至关重要。在这项研究中,和频产生(SFG)振动光谱被应用于研究固定在自组装单层(SAM)上的肽的这种结构。这里,半胱氨酸修饰的抗菌肽 Cecropin P1(CP1)通过马来酰亚胺末端基团被化学固定在 SAM 上。两个重要特征,SAM 中聚乙二醇(PEG)片段的长度和肽中半胱氨酸残基的位置,使用 SFG 光谱进行了研究,以确定每个特征对表面固定化以及肽在固定状态下的二级结构和取向的影响。结果表明,虽然研究中每种 PEG 链的长度都促进了目标肽的化学固定化并阻止了非特异性吸附,但 CP1 固定在长链(PEG2k)马来酰亚胺 SAM 上时在水中显示无规卷曲结构,而 CP1 当固定在短链(具有四个乙二醇单元 - (EG4))马来酰亚胺 SAM 上时显示α-螺旋结构。半胱氨酸残基位于 C 末端时,当与 EG4 马来酰亚胺 SAM 表面连接时,CP1 形成单一取向的α-螺旋结构。相比之下,通过 CP1 的 N 末端固定化导致无规卷曲或躺下螺旋结构。对细菌捕获/杀伤能力进行了测试,结果表明,通过 C 和 N 末端半胱氨酸固定在表面的 CP1 分子,尽管它们具有不同的二级结构和取向,但仅略有差异。