Suppr超能文献

通过双链断裂修复的腺相关病毒介导的基因编辑。

AAV-mediated gene editing via double-strand break repair.

作者信息

Hirsch Matthew L, Samulski R Jude

机构信息

Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Methods Mol Biol. 2014;1114:291-307. doi: 10.1007/978-1-62703-761-7_19.

Abstract

Traditionally, the ability to edit the mammalian genome was inhibited by the inherent low efficiency of homologous recombination (HR; approximately <1 in a million events) and the inability to deliver DNA efficiently to dividing and non-dividing cells/tissue. Despite these limitations, creative selections designed over 20 years ago, clearly demonstrated the powerful implications of gene knock-in and knockout technology for the genetic engineering of mice (Doetschman et al. Nat 330(6148): 576-578, 1987; Thomas and Capecchi. Cell 51(3): 503-512, 1987). The development and application of recombinant vectors based on adeno-associated virus (rAAV) have helped to overcome both of the initial limitations regarding DNA delivery and the frequency of HR. Considering DNA delivery, rAAV infects non-dividing and dividing cultured cells as well as most tissues in mouse and larger animal models (including humans). At the DNA editing level, rAAV genomes have been reported to increase the frequency of HR several orders of magnitude by serving as the repair substrate (Russell and Hirata. Nat Genet 18(4): 325-330, 1998). However, reports on the ability of rAAV genomes to stimulate HR, compared to plasmid DNA and oligonucleotides, are variable, and many labs have found it necessary to augment the frequency of rAAV-induced HR using site-specific endonucleases (Ellis et al. Gene Ther, 2012; Hirsch et al. Gene Ther 17(9): 1175-1180, 2010; Porteus et al. Mol Cell Biol 23(10): 3558-3565, 2003; Radecke et al. Mol Ther 14(6): 798-808, 2006). In this protocol, we describe a method to perform rAAV-mediated double-strand break (DSB) repair for precise genetic engineering in human cells.

摘要

传统上,编辑哺乳动物基因组的能力受到同源重组(HR,约百万分之一事件)固有低效率以及无法将DNA有效递送至分裂和非分裂细胞/组织的限制。尽管存在这些限制,但20多年前设计的创新性筛选方法,清楚地证明了基因敲入和敲除技术对小鼠基因工程的强大影响(多伊奇曼等人,《自然》330(6148): 576 - 578, 1987年;托马斯和卡佩奇,《细胞》51(3): 503 - 512, 1987年)。基于腺相关病毒(rAAV)的重组载体的开发和应用有助于克服关于DNA递送和HR频率的最初两个限制。考虑到DNA递送,rAAV可感染非分裂和分裂的培养细胞以及小鼠和大型动物模型(包括人类)中的大多数组织。在DNA编辑水平上,据报道rAAV基因组作为修复底物可将HR频率提高几个数量级(拉塞尔和平田,《自然遗传学》18(4): 325 - 330, 1998年)。然而,与质粒DNA和寡核苷酸相比,关于rAAV基因组刺激HR能力的报道并不一致,许多实验室发现有必要使用位点特异性核酸内切酶来提高rAAV诱导的HR频率(埃利斯等人,《基因治疗》,2012年;赫希等人,《基因治疗》17(9): 1175 - 1180, 2010年;波特斯等人,《分子细胞生物学》23(10): 3558 - 3565, 2003年;拉德克等人,《分子治疗》14(6): 798 - 808, 2006年)。在本方案中,我们描述了一种在人类细胞中进行rAAV介导的双链断裂(DSB)修复以实现精确基因工程的方法。

相似文献

1
AAV-mediated gene editing via double-strand break repair.
Methods Mol Biol. 2014;1114:291-307. doi: 10.1007/978-1-62703-761-7_19.
2
Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.
Methods Mol Biol. 2016;1382:21-39. doi: 10.1007/978-1-4939-3271-9_2.
5
Evaluation of the fate of rAAV genomes following in vivo administration.
Methods Mol Biol. 2011;807:239-58. doi: 10.1007/978-1-61779-370-7_10.
7
Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair.
Gene Ther. 2010 Sep;17(9):1175-80. doi: 10.1038/gt.2010.65. Epub 2010 May 13.
8
Homologous recombination is required for AAV-mediated gene targeting.
Nucleic Acids Res. 2006 Jul 5;34(11):3345-60. doi: 10.1093/nar/gkl455. Print 2006.
9
Adeno-associated virus inverted terminal repeats stimulate gene editing.
Gene Ther. 2015 Feb;22(2):190-5. doi: 10.1038/gt.2014.109. Epub 2014 Dec 11.
10
Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks.
Mol Cell Biol. 2003 May;23(10):3558-65. doi: 10.1128/MCB.23.10.3558-3565.2003.

引用本文的文献

1
Various AAV Serotypes and Their Applications in Gene Therapy: An Overview.
Cells. 2023 Mar 1;12(5):785. doi: 10.3390/cells12050785.
2
Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes Single-Cell RNA Sequencing.
Front Immunol. 2021 Oct 21;12:730825. doi: 10.3389/fimmu.2021.730825. eCollection 2021.
3
In Vivo Genome Editing as a Therapeutic Approach.
Int J Mol Sci. 2018 Sep 12;19(9):2721. doi: 10.3390/ijms19092721.
4
Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?
Hum Gene Ther. 2017 Jun;28(6):450-463. doi: 10.1089/hum.2017.038.
5
Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines Production of Allogeneic Gene-Edited CAR T Cells.
Mol Ther. 2017 Apr 5;25(4):949-961. doi: 10.1016/j.ymthe.2017.02.005. Epub 2017 Feb 23.
6
Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors.
Methods Mol Biol. 2016;1382:21-39. doi: 10.1007/978-1-4939-3271-9_2.
7
Genome editing in human stem cells.
Methods Enzymol. 2014;546:119-38. doi: 10.1016/B978-0-12-801185-0.00006-4.

本文引用的文献

2
AAV vectors containing rDNA homology display increased chromosomal integration and transgene persistence.
Mol Ther. 2012 Oct;20(10):1902-11. doi: 10.1038/mt.2012.157. Epub 2012 Sep 18.
4
The AAV vector toolkit: poised at the clinical crossroads.
Mol Ther. 2012 Apr;20(4):699-708. doi: 10.1038/mt.2011.287. Epub 2012 Jan 24.
6
Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.
PLoS One. 2011;6(11):e27520. doi: 10.1371/journal.pone.0027520. Epub 2011 Nov 17.
7
Genome engineering with zinc-finger nucleases.
Genetics. 2011 Aug;188(4):773-82. doi: 10.1534/genetics.111.131433.
8
In vivo genome editing restores haemostasis in a mouse model of haemophilia.
Nature. 2011 Jun 26;475(7355):217-21. doi: 10.1038/nature10177.
9
Assessing the potential for AAV vector genotoxicity in a murine model.
Blood. 2011 Mar 24;117(12):3311-9. doi: 10.1182/blood-2010-08-302729. Epub 2010 Nov 24.
10
AAV's anatomy: roadmap for optimizing vectors for translational success.
Curr Gene Ther. 2010 Oct;10(5):319-340. doi: 10.2174/156652310793180706.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验