Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, CH-3012 Bern, Switzerland.
J Phys Chem B. 2014 Mar 20;118(11):2973-84. doi: 10.1021/jp500410s. Epub 2014 Mar 6.
The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm(–1) resolution. The 0(0)(0) rotational band contour is polarized in-plane, implying that the electronic transition is (1)ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the (1)ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm(–1) is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the (1)ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm(–1); this is attributed to the (1)ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm(–1), rapid nonradiative relaxation (k(nr) ≥ 10(12) s(–1)) sets in, which we interpret as the height of the (1)ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm(–1). These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of dependence on temperature and on the surrounding medium implies that the 5FCyt nonradiative relaxation from its S1 ((1)ππ*) state is essentially controlled by the same ~1200 cm(–1) barrier and conical intersection both in the gas phase and in solution.
通过在 0.3 和 0.05 cm(-1)分辨率下进行双色共振双光子电离光谱学研究,我们研究了喷射冷却的酮-氨基 5-氟胞嘧啶(5FCyt)的 S0→S1 振子光谱和 S1 态非辐射弛豫。0(0)(0)转动带轮廓呈面内偏振,表明电子跃迁为(1)ππ*。电子跃迁偶极矩取向和转动常数的变化与 SCS-CC2 对 5FCyt 的(1)ππ*(S1)跃迁的计算值非常吻合。光谱区域从 0 到 300 cm(-1)主要由面外 ν1'(船)、ν2'(蝴蝶)和 ν3'(HN-C6H 扭曲)振动的泛音和组合带主导,这表明嘧啶酮框架通过(1)ππ激发而在面外发生扭曲,与 SCS-CC2 计算结果一致。在+350 cm(-1)左右,振子带的数量急剧增加;这归因于(1)ππ态平面性障碍,该障碍对应于 ν1'、ν2'和 ν3'坐标的面外振动势能的中心最大值,从而导致振子激发的高密度。在+1200 cm(-1)处,快速的非辐射弛豫(k(nr)≥10(12) s(-1))开始,我们将其解释为 5FCyt 中最低 S1/S0 锥形交叉前的(1)ππ态障碍的高度。该 5FCyt 中的障碍比胞嘧啶高 3 倍。ν'=0、2ν1'、2ν2'、2ν1'+2ν2'、4ν2'和 2ν1'+4ν2'能级的寿命是从洛伦兹宽度拟合到转动带轮廓确定的,ν'=0 时的寿命τ≥75 ps,在+234 cm(-1)处的 2ν1'+4ν2'能级下降到 τ≥55 ps。这些气相寿命是 S1 态胞嘧啶的两倍,是气相中其他典型碱基的 10-100 倍。另一方面,5FCyt 的气相寿命接近室温溶剂中的 73 ps 寿命。这种对温度和周围介质的依赖性的缺乏意味着 5FCyt 从其 S1((1)ππ)态的非辐射弛豫基本上由相同的~1200 cm(-1)障碍和锥形交叉共同控制,无论是在气相还是在溶液中。