Suppr超能文献

发热注射吸毒者心内膜炎预测规则的验证。

Validation of a prediction rule for endocarditis in febrile injection drug users.

机构信息

Stanford University Medical Center, Stanford, CA.

San Francisco General Hospital/University of California San Francisco, San Francisco, CA.

出版信息

Am J Emerg Med. 2014 May;32(5):412-6. doi: 10.1016/j.ajem.2014.01.008. Epub 2014 Jan 18.

Abstract

BACKGROUND

Infectious endocarditis (IE) in febrile injection drug users (IDUs) is a critical diagnosis to identify in the emergency department (ED). A decision tool that identifies patients at very low risk for endocarditis using readily available clinical data could reduce admissions and cost.

OBJECTIVE

To evaluate the diagnostic performance of a previously derived decision instrument to rule out endocarditis in febrile IDUs (Prediction Rule for Endocarditis in Injection Drug Users [PRE-IDU]) and to develop a prediction model for likelihood of endocarditis for those who are not ruled out by PRE-IDU.

METHODS

Febrile IDUs admitted to rule out endocarditis were prospectively enrolled from 2 urban EDs in June 2007 to March 2011. Clinical data from ED presentation (first 6 hours) and outcome data from inpatient records were recorded and reviewed by 2 independent investigators. Diagnosis of IE was based on modified Duke criteria and discharge summaries. The diagnostic performance of PRE-IDU, which combines tachycardia, cardiac murmur, and absence of skin infection, was determined using recursive partitioning and logistic regression modeling.

RESULTS

Of the 249 subjects, 18 (7%) had IE. Recursive partitioning yielded an instrument with 100% sensitivity (95% confidence interval [CI], 84%-100%) and 100% negative predictive value (95% CI, 91%-100%), but low specificity (13%; 95% CI, 12%-13%). Multiple logistic regression modeling with the 3 clinical predictors allowed risk stratification with posttest probabilities ranging from 3% to 20%.

CONCLUSION

The PRE-IDU instrument predicted IE with high sensitivity and ruled out IE with high negative predictive value. Our logistic regression model provided posttest probabilities ranging from 3% to 20%. The PRE-IDU instrument and the associated model may help guide hospital admission and diagnostic testing in evaluation of febrile IDUs in the ED.

摘要

背景

在急诊(ED)中,诊断发热的注射吸毒者(IDU)合并感染性心内膜炎(IE)是一个重要的任务。一个使用易获得的临床数据识别低危 IE 的决策工具可以减少住院人数和费用。

目的

评估一种先前开发的用于排除发热 IDU 中 IE 的决策工具(注射吸毒者 IE 预测规则[PRE-IDU])的诊断性能,并为那些未被 PRE-IDU 排除的患者建立 IE 可能性的预测模型。

方法

从 2007 年 6 月至 2011 年 3 月,前瞻性纳入了在 2 家城市 ED 以排除 IE 而发热的 IDU。记录了 ED 就诊时(前 6 小时)的临床数据,并由 2 位独立研究者回顾了住院记录中的结局数据。IE 的诊断基于改良的 Duke 标准和出院小结。使用递归分区和逻辑回归建模来确定结合心动过速、心脏杂音和无皮肤感染的 PRE-IDU 的诊断性能。

结果

在 249 例患者中,18 例(7%)患有 IE。递归分区得到的工具具有 100%的敏感性(95%置信区间[CI],84%-100%)和 100%的阴性预测值(95%CI,91%-100%),但特异性低(13%;95%CI,12%-13%)。使用 3 个临床预测因子的多元逻辑回归建模允许进行风险分层,其在检验后概率为 3%至 20%。

结论

PRE-IDU 工具预测 IE 具有高敏感性,并以高阴性预测值排除 IE。我们的逻辑回归模型提供了 3%至 20%的检验后概率。PRE-IDU 工具和相关模型可能有助于指导 ED 中发热 IDU 的住院和诊断性检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验