Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden, Department of Numerical Analysis and Computer Science, Stockholm University, Sweden, McGill Centre for Bioinformatics, 4th floor, Bellini Building, Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1, UMR CNRS 5558 - LBBE, "Biométrie et Biologie évolutive", UCB Lyon 1 - Bât. Grégor Mendel, 43 bd du 11 novembre 1918, 69622 VILLEURBANNE cedex, Department of Mechanics, Osquars Backe 18, KTH, SE-100 44 Stockholm, Sweden, Karolinska University Hospital, CMM L8:03, Solna, SE-171 76 Stockholm, Sweden and The School of Computer Science and Communication, Lindstedtsvägen 3, 5, KTH CSC, SE-100 44 Stockholm, Sweden.
Syst Biol. 2014 May;63(3):409-20. doi: 10.1093/sysbio/syu007. Epub 2014 Feb 20.
Lateral gene transfer (LGT)--which transfers DNA between two non-vertically related individuals belonging to the same or different species--is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.
横向基因转移(LGT)——将 DNA 在属于同一或不同物种的两个非垂直相关个体之间转移——被认为是原核生物进化的主要力量,其对真核生物进化的影响的证据也在不断增加。LGT 因其在细菌中转移致病因子和抗生素耐药性以及将抗农药性从转基因作物转移到其他植物的潜力而引起了公众的广泛关注。从更广泛的角度来看,越来越多的研究强调了 LGT 在使生物体占据新生态位或适应环境变化方面的作用。LGT 对基于树的进化标准概念的挑战也正在被争论。然而,LGT 的研究受到缺乏计算工具的严重限制。目前可用的最好的 LGT 算法是基于简约性的系统发育方法,它需要预先计算基因树,并且不能在有时差异很大的最简约解决方案之间进行选择。此外,在许多研究中,应用了简单的启发式方法,只能处理假定的直系同源物,完全忽略基因复制(GD)。因此,特定基因家族之间的提议 LGT 以及一般的 LGT 率仍然存在争议。我们提出了一种基于贝叶斯马尔可夫链蒙特卡罗的方法,该方法整合了 GD、基因丢失、LGT 和序列进化,并将该方法应用于两组细菌的全基因组分析:柔膜菌和蓝细菌。我们的分析表明,尽管远缘物种之间的 LGT 率很高,但平均而言,复制和近缘物种 LGT 的净综合率更高。我们还表明,在基因树推断中忽略可调和性的常见做法高估了 LGT 和复制事件的数量。