Suppr超能文献

通过网络优化对与人类疾病相关的蛋白质复合物进行优先级排序。

Prioritizing protein complexes implicated in human diseases by network optimization.

作者信息

Chen Yong, Jacquemin Thibault, Zhang Shuyan, Jiang Rui

出版信息

BMC Syst Biol. 2014;8 Suppl 1(Suppl 1):S2. doi: 10.1186/1752-0509-8-S1-S2. Epub 2014 Jan 24.

Abstract

BACKGROUND

The detection of associations between protein complexes and human inherited diseases is of great importance in understanding mechanisms of diseases. Dysfunctions of a protein complex are usually defined by its member disturbance and consequently result in certain diseases. Although individual disease proteins have been widely predicted, computational methods are still absent for systematically investigating disease-related protein complexes.

RESULTS

We propose a method, MAXCOM, for the prioritization of candidate protein complexes. MAXCOM performs a maximum information flow algorithm to optimize relationships between a query disease and candidate protein complexes through a heterogeneous network that is constructed by combining protein-protein interactions and disease phenotypic similarities. Cross-validation experiments on 539 protein complexes show that MAXCOM can rank 382 (70.87%) protein complexes at the top against protein complexes constructed at random. Permutation experiments further confirm that MAXCOM is robust to the network structure and parameters involved. We further analyze protein complexes ranked among top ten for breast cancer and demonstrate that the SWI/SNF complex is potentially associated with breast cancer.

CONCLUSIONS

MAXCOM is an effective method for the discovery of disease-related protein complexes based on network optimization. The high performance and robustness of this approach can facilitate not only pathologic studies of diseases, but also the design of drugs targeting on multiple proteins.

摘要

背景

检测蛋白质复合物与人类遗传性疾病之间的关联对于理解疾病机制至关重要。蛋白质复合物的功能障碍通常由其成员紊乱来定义,进而导致某些疾病。尽管单个疾病蛋白已被广泛预测,但仍缺乏用于系统研究疾病相关蛋白质复合物的计算方法。

结果

我们提出了一种名为MAXCOM的方法,用于对候选蛋白质复合物进行优先级排序。MAXCOM通过结合蛋白质-蛋白质相互作用和疾病表型相似性构建的异质网络,执行最大信息流算法来优化查询疾病与候选蛋白质复合物之间的关系。对539个蛋白质复合物进行的交叉验证实验表明,与随机构建的蛋白质复合物相比,MAXCOM能够将382个(70.87%)蛋白质复合物排在前列。排列实验进一步证实MAXCOM对所涉及的网络结构和参数具有鲁棒性。我们进一步分析了乳腺癌排名前十的蛋白质复合物,并证明SWI/SNF复合物可能与乳腺癌有关。

结论

MAXCOM是一种基于网络优化发现疾病相关蛋白质复合物的有效方法。该方法的高性能和鲁棒性不仅有助于疾病的病理学研究,还能促进针对多种蛋白质的药物设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b97/4080363/3c1e5dd03178/1752-0509-8-S1-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验