Ingle Lee, Rigby Alan S, Sloan Rebecca, Carroll Sean, Goode Kevin M, Cleland John G, Clark Andrew L
Department of Sport, Health & Exercise Science, University of Hull, , Kingston-upon-Hull, UK.
Heart. 2014 May;100(10):781-6. doi: 10.1136/heartjnl-2013-304614. Epub 2014 Feb 24.
Cardiopulmonary exercise testing (CPET) is used to predict outcome in patients with mild-to-moderate heart failure (HF). Single CPET-derived variables are often used, but we wanted to see if a composite score achieved better predictive power.
Retrospective analysis of patient records at the department of cardiology, Castle Hill Hospital, Kingston-upon-Hull. 387 patients (median (25th-75th percentile)) (age 65 (56-72) years; 79% men; LVEF 34 (31-37) %) were included. Patients underwent a symptom-limited, maximal CPET on a treadmill. During a median follow-up of 8.6±2.1 years in survivors, 107 patients died. Survival models were built and validated using a hybrid approach between the bootstrap and Cox regression. Nine CPET-derived variables were included. Z-score defined each variable's predictive strength. Model coefficients were converted to a risk score.
Four CPET-related variables were independent predictors of all-cause mortality in the survival model: the presence of exertional oscillatory ventilation (EOV), increasing slope of the relation between ventilation and carbon dioxide production (VE/VCO2 slope), decreasing oxygen uptake efficiency slope (OUES), and an increase in the lowest ventilatory equivalent for carbon dioxide (VEqCO2 nadir). Individual predictors of mortality ranged from 0.60 to 0.71 using Harrell's C-statistic, but the optimal combination of EOV+VE/VCO2 slope+OUES+VEqCO2 nadir reached 0.75. The Hull CPET risk score had a significantly higher area under the curve (0.78) when compared to the HF Survival Score (AUC=0.70; p<0.001).
A composite risk score using variables from CPET out-performs the traditional single variable approach in predicting outcome in patients with mild-to-moderate HF.
心肺运动试验(CPET)用于预测轻至中度心力衰竭(HF)患者的预后。通常使用单个源自CPET的变量,但我们想了解综合评分是否具有更好的预测能力。
对位于赫尔河畔金斯敦的城堡山医院心脏病科的患者记录进行回顾性分析。纳入387例患者(中位数(第25 - 75百分位数))(年龄65(56 - 72)岁;79%为男性;左心室射血分数34(31 - 37)%)。患者在跑步机上进行症状限制的最大CPET。在幸存者中进行了中位时间为8.6±2.1年的随访,107例患者死亡。使用自举法和Cox回归之间的混合方法构建并验证生存模型。纳入了9个源自CPET的变量。Z评分定义了每个变量的预测强度。将模型系数转换为风险评分。
在生存模型中,4个与CPET相关的变量是全因死亡率的独立预测因素:运动性振荡通气(EOV)的存在、通气与二氧化碳产生关系的斜率增加(VE/VCO2斜率)、氧摄取效率斜率降低(OUES)以及二氧化碳最低通气当量增加(VEqCO2最低点)。使用Harrell's C统计量,个体死亡率预测因素范围为0.60至0.71,但EOV + VE/VCO2斜率 + OUES + VEqCO2最低点的最佳组合达到0.75。与HF生存评分相比,赫尔CPET风险评分的曲线下面积显著更高(0.78)(AUC = 0.70;p < 0.001)。
在预测轻至中度HF患者的预后方面,使用源自CPET的变量的综合风险评分优于传统的单变量方法。