Suppr超能文献

分子钳防止α-突触核蛋白聚集的分子基础。

Molecular basis for preventing α-synuclein aggregation by a molecular tweezer.

机构信息

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823.

Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095.

出版信息

J Biol Chem. 2014 Apr 11;289(15):10727-10737. doi: 10.1074/jbc.M113.524520. Epub 2014 Feb 24.

Abstract

Recent work on α-synuclein has shown that aggregation is controlled kinetically by the rate of reconfiguration of the unstructured chain, such that the faster the reconfiguration, the slower the aggregation. In this work we investigate this relationship by examining α-synuclein in the presence of a small molecular tweezer, CLR01, which binds selectively to Lys side chains. We find strong binding to multiple Lys within the chain as measured by fluorescence and mass-spectrometry and a linear increase in the reconfiguration rate with concentration of the inhibitor. Top-down mass-spectrometric analysis shows that the main binding of CLR01 to α-synuclein occurs at the N-terminal Lys-10/Lys-12. Photo-induced cross-linking of unmodified proteins (PICUP) analysis shows that under the conditions used for the fluorescence analysis, α-synuclein is predominantly monomeric. The results can be successfully modeled using a kinetic scheme in which two aggregation-prone monomers can form an encounter complex that leads to further oligomerization but can also dissociate back to monomers if the reconfiguration rate is sufficiently high. Taken together, the data provide important insights into the preferred binding site of CLR01 on α-synuclein and the mechanism by which the molecular tweezer prevents self-assembly into neurotoxic aggregates by α-synuclein and presumably other amyloidogenic proteins.

摘要

最近关于α-突触核蛋白的研究表明,聚集过程在动力学上受到无规线团构象重排速率的控制,即构象重排越快,聚集越慢。在这项工作中,我们通过研究小分子钳子 CLR01 存在下的α-突触核蛋白来研究这种关系,CLR01 选择性地结合赖氨酸侧链。我们通过荧光和质谱测量发现,在链内有多个赖氨酸与 CLR01 发生强结合,并且抑制剂浓度与构象重排速率呈线性增加。自上而下的质谱分析表明,CLR01 与α-突触核蛋白的主要结合部位位于 N 端的赖氨酸 10/12。未经修饰的蛋白质光诱导交联分析(PICUP)表明,在用于荧光分析的条件下,α-突触核蛋白主要以单体形式存在。使用动力学模型可以成功地对结果进行建模,该模型表明,两个易于聚集的单体可以形成一个接触复合物,导致进一步的寡聚化,但如果构象重排速率足够高,也可以解离回单体。总之,这些数据为 CLR01 在α-突触核蛋白上的优先结合位点以及分子钳子通过阻止α-突触核蛋白和可能的其他淀粉样蛋白形成神经毒性聚集体的自组装提供了重要的见解。

相似文献

1
Molecular basis for preventing α-synuclein aggregation by a molecular tweezer.
J Biol Chem. 2014 Apr 11;289(15):10727-10737. doi: 10.1074/jbc.M113.524520. Epub 2014 Feb 24.
3
CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease.
Nat Commun. 2020 Sep 28;11(1):4885. doi: 10.1038/s41467-020-18689-x.
4
Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator.
J Am Soc Mass Spectrom. 2019 Jan;30(1):16-23. doi: 10.1007/s13361-018-2027-6. Epub 2018 Jul 30.
5
A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing α-Synuclein.
Neurotherapeutics. 2017 Oct;14(4):1107-1119. doi: 10.1007/s13311-017-0544-9.
6
Inhibition of Mutant αB Crystallin-Induced Protein Aggregation by a Molecular Tweezer.
J Am Heart Assoc. 2017 Aug 8;6(8):e006182. doi: 10.1161/JAHA.117.006182.
7
Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins.
J Am Chem Soc. 2011 Oct 26;133(42):16958-69. doi: 10.1021/ja206279b. Epub 2011 Sep 29.
9
Aggregation of α-synuclein is kinetically controlled by intramolecular diffusion.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2336-41. doi: 10.1073/pnas.1109526109. Epub 2012 Jan 27.
10
Disaggregation mechanism of prion amyloid for tweezer inhibitor.
Int J Biol Macromol. 2021 Apr 15;176:510-519. doi: 10.1016/j.ijbiomac.2021.02.094. Epub 2021 Feb 16.

引用本文的文献

1
Lysine-Targeting Inhibitors of Amyloidogenic Protein Aggregation: A Promise for Neurodegenerative Proteinopathies.
JACS Au. 2025 Aug 11;5(8):3680-3700. doi: 10.1021/jacsau.5c00269. eCollection 2025 Aug 25.
2
Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds.
Adv Sci (Weinh). 2025 Apr;12(14):e2416721. doi: 10.1002/advs.202416721. Epub 2025 Feb 14.
3
O-GlcNAc Modification of α-Synuclein Can Alter Monomer Dynamics to Control Aggregation Kinetics.
ACS Chem Neurosci. 2024 Aug 21;15(16):3044-3052. doi: 10.1021/acschemneuro.4c00301. Epub 2024 Jul 31.
4
Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS.
Front Mol Biosci. 2024 May 24;11:1383453. doi: 10.3389/fmolb.2024.1383453. eCollection 2024.
5
Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer's pathology.
Transl Neurodegener. 2024 Jan 4;13(1):2. doi: 10.1186/s40035-023-00393-7.
8
Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers.
ACS Chem Neurosci. 2023 Sep 6;14(17):3192-3205. doi: 10.1021/acschemneuro.3c00326. Epub 2023 Aug 24.
10
Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications.
Pharmacol Rev. 2023 Mar;75(2):263-308. doi: 10.1124/pharmrev.122.000654. Epub 2022 Dec 22.

本文引用的文献

1
Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13392-7. doi: 10.1073/pnas.1304749110. Epub 2013 Jul 30.
2
Molecular tweezers with varying anions: a comparative study.
J Org Chem. 2013 Jul 5;78(13):6721-34. doi: 10.1021/jo4009673. Epub 2013 Jun 18.
3
Molecular tweezers modulate 14-3-3 protein-protein interactions.
Nat Chem. 2013 Mar;5(3):234-9. doi: 10.1038/nchem.1570. Epub 2013 Feb 17.
4
In vivo cross-linking reveals principally oligomeric forms of α-synuclein and β-synuclein in neurons and non-neural cells.
J Biol Chem. 2013 Mar 1;288(9):6371-85. doi: 10.1074/jbc.M112.403311. Epub 2013 Jan 14.
6
7
A novel "molecular tweezer" inhibitor of α-synuclein neurotoxicity in vitro and in vivo.
Neurotherapeutics. 2012 Apr;9(2):464-76. doi: 10.1007/s13311-012-0105-1.
9
Aggregation of α-synuclein is kinetically controlled by intramolecular diffusion.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2336-41. doi: 10.1073/pnas.1109526109. Epub 2012 Jan 27.
10
Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate.
J Biol Chem. 2012 Mar 16;287(12):9193-9. doi: 10.1074/jbc.M111.325548. Epub 2012 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验